1

How are PX₄⁺, P₂X₅⁺ and AsBr₄⁺ Formed? Why didn't we Succeed to Prepare AsI₄⁺? A Theoretical Study.

by

M. Gonsior, I. Krossing*

^{a)} M.Sc. Marcin Gonsior, Universität Karlsruhe, Institut für Anorganische Chemie,
Engesserstr. Geb. 30.45, 76128 Karlsruhe, e-mail: gonsior@chemie.uni-karlsruhe.de
^{b)} Prof. Ingo Krossing, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of
Inorganic and Coordination Chemistry (LCIC), ISIC-BCH, 1015 Lausanne, Switzerland, e-mail: ingo.krossing@epfl.ch

2

Computed Total Energies of all Species

Tab. A. Total energy, zero point energy, solvation energy and thermal and entropic contributions at 298K to the free energy of all calculated species in [H] (at MP2/TZVPP

level).

Molecule (symmetry)	U	ZPE	H _{solv} (BP86/SVP)	Thermal+Entropic
	(MP2/TZVPP)	(MP2/TZVPP)	COSMO	correc. to G at 298K
$AsBr_2^+(C_{2v})$	-7379.34087	0.00197	-0.08149	-0.02874
$\operatorname{AsI}_{2}^{+}(\operatorname{C}_{2v})$	-2256.84173	0.00158	-0.07563	-0.03070
$\operatorname{PBr_2^+}(\operatorname{C_{2v}})$	-5485.74848	0.00264	-0.07953	-0.02701
$PI_{2}^{+}(C_{2v})$	-363.24680	0.00221	-0.07384	-0.02902
$AsBr_4^+(T_d)$	-12524.56758	0.00444	-0.06447	-0.03171
$AsI_4^+(T_d)$	-2279.56412	0.00335	-0.06262	-0.03606
$PBr_4^+(T_d)$	-10630.99836	0.00574	-0.06472	-0.02926
$\mathrm{PI_4}^+(\mathrm{T_d})$	-385.98251	0.00444	-0.06119	-0.03382
$As_2Br_5^+(C_s)$	-17331.67684	0.00608	-0.06210	-0.04104
$As_2I_5^+(C_s)$	-4525.41879	0.00490	-0.05905	-0.04589
$P_2Br_5^+(C_s)$	-13544.51217	0.00830	-0.06013	-0.03617
$P_2 I_5^+ (C_s)$	-738.24532	0.00686	-0.05709	-0.04130
AsBr ₃ (C_{3v})	-9952.28126	0.00283	-0.00353	-0.03156
$AsI_{3}(C_{3v})$	-2268.50920	0.00223	-0.00407	-0.03460
$PBr_3(C_{3v})$	-8058.68874	0.00368	-0.00188	-0.02972
$PI_{3}(C_{3v})$	-374.91413	0.00301	-0.00281	-0.03386
$\mathrm{Br}_{2}\left(\mathrm{D}_{\infty\mathrm{h}} ight)$	-5145.14283	0.00076	-0.00165	-0.02236
$I_2(D_{\infty h})$	-22.65132	0.00054	-0.00256	-0.02593
AgBr ($C_{\infty v}$)	-2719.12161	0.00056	-0.01338	-0.02495
AgI $(C_{\infty v})$	-157.86742	0.00047	-0.01270	-0.02580
$Ag(CH_2Cl_2)_3^+(C_2)$	-3022.16690	0.08808	-0.06004	0.02628
$CH_2Cl_2(C_{2v})$	-958.61384	0.02794	-0.00404	0.00621
$Ag(Br_2AsBr)_2^+(C_2)$	-20050.87880	0.00658	-0.06035	-0.05379
$Ag(I_2AsI)_2^+(C_2)$	-4683.35030	0.00534	-0.05675	-0.05920
$Ag(Br_2PBr)_2^+(C_2)$	-16263.68695	0.00826	-0.05923	-0.04980
$Ag(I_2PI)_2^+(C_2)$	-896.15586	0.00687	-0.05600	-0.05573
$(CH_2Cl_2)Ag(Br_2AsBr)^+$ (C _s)	-11057.20394	0.03400	-0.06268	-0.02085
$(CH_2Cl_2)Ag(I_2AsI)^+(C_s)$	-3373.44045	0.03331	-0.06083	-0.02479
$(CH_2Cl_2)Ag(Br_2PBr)^+(C_s)$	-9163.60810	0.03483	-0.06253	-0.01915
$(CH_2Cl_2)Ag(I_2PI)^+(C_s)$	-1479.84299	0.03413	-0.06059	-0.02212

Electronic Supplementary Information for Dalton Transactions This journal is ${\ensuremath{\mathbb C}}$ The Royal Society of Chemistry 2005

		3		
$(BrAsBr_2)Ag(Br_2)^+(C_1)$	-15243.72475	0.00459	-0.06369	-0.04852
$(IAsI_2)Ag(I_2)^+(C_1)$	-2437.47006	0.00370	-0.06081	-0.05215
$(BrPBr_2)Ag(Br_2)^+(C_1)$	-13350.12867	0.00541	-0.06336	-0.04685
$(IPI_2)Ag(I_2)^+(C_1)$	-543.88327	0.00446	-0.06041	-0.05054
$(I_{3}As)Ag(AsI_{3})^{+}(C_{2h})$	-4683.34179	0.00598	-0.05619	-0.05699
$(Br_3As)Ag(AsBr)_3^+(C_{2h})$	-20050.86558	0.00751	-0.06058	-0.04902
$(I_3P)Ag(PI_3)^+(C_{2h})$	-896.16867	0.00790	-0.05611	-0.05262
$(Br_3P)Ag(PBr_3)^+(C_{2h})$	-16263.70295	0.00966	-0.05817	-0.04505
$(I_3As)Ag(I_2AsI)^+(C_1)$	-4683.34815	0.00568	-0.05777	-0.05803
$(Br_3As)Ag(Br_2AsBr)^+$				
(C_1)	-20050.87359	0.00700	-0.06177	-0.05290
$(I_3P)Ag(I_2PI)^+(C_1)$	-896.16348	0.00741	-0.05705	-0.05431
$(Br_3P)Ag(Br_2PBr)^+(C_1)$	-16263.69562	0.00884	-0.05925	-0.05276
$(I_3As)Ag(CH_2Cl_2)^+(C_1)$	-3373.43618	0.03372	-0.06345	-0.02289
$(Br_3As)Ag(CH_2Cl_2)^+(C_1)$	-11057.19895	0.03451	-0.06526	-0.01915
$(I_3P)Ag(CH_2Cl_2)^+(C_1)$	-1479.84946	0.03467	-0.06213	-0.02088
$(Br_3P)Ag(CH_2Cl_2)^+(C_1)$	-9163.61733	0.03559	-0.06294	-0.01704
$(I_3As)(I_2)Ag^+(C_s)$	-2437.46516	0.00400	-0.06000	-0.05083
$(Br_3P)(Br_2)Ag^+(C_s)$	-13350.14656	0.00652	-0.06281	-0.04429
$(I_3P)(I_2)Ag^+(C_s)$	-543.88068	0.00504	-0.05968	-0.04873
$(Br_3As)(Br_2)Ag^+(C_s)$	-15243.71845	0.00521	-0.06060	-0.04544
$(I_3P)Ag(I_2)^+(C_1)$	-543.88960	0.00501	-0.06103	-0.04924
$(\mathrm{Br}_{3}\mathrm{P})\mathrm{Ag}(\mathrm{Br}_{2})^{+}(\mathrm{C}_{1})$	-13350.13710	0.00621	-0.06321	-0.04340
$(I_{3}As)Ag(I_{2})^{+}(C_{1})$	-2437.47608	0.00403	-0.06136	-0.05142
$(Br_3As)Ag(Br_2)^+(C_1)$	-15243.71831	0.00513	-0.06538	-0.04544
$(P_4)Ag(Br_2AsBr)^+(C_s)$	-11462_22182	0.01039	-0.05967	-0.04401
$Ag(P_{4})_{2}^{+}(D_{2h})$	-2873_56265	0.01403	-0.05940	-0.03253
$Ag(I_2)_2^+(C_{2h})$	-191.60812	0.00254	-0.06588	-0.04342
$Ag(Br_{2})_{2}^{+}(C_{2h})$	-10436_56854	0.00254	-0.06890	-0.04342

Ag(X₂)⁺ Energies and structures (X = Br, I; MP2/TZVPP)

_

				E(rel)
	U	ZPE	H(0K)	(kJ/mol)
plan.90grad AgBr2+	-5291.39275	0.001189	-5291.39156	0
plan.90grad Agl2+	-168.912853	0.0009276	-168.911925	0
cycle AgBr2+	-5291.39143	0.0010611	-5291.39036	+3.13
cycle Agl2+	-168.912452	0.000854	-168.911598	+0.86
* linear AgBr2+	-5291.36826	0.0009651	-5291.36729	+63.71
* linear Agl2+	-168.881567	0.0007277	-168.880839	+81.62
* 2 imaginary Frequencies				

⁴ Optimized $Ag(X_2)^+$ structures at the MP2/TZVPP level (X = Br, I):

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

Deposited Born Haber Cycles and Auxiliary Data

$$Ag(CH_{2}Cl_{2})_{3}^{+}(g) + 2EX_{3}(g) \xrightarrow{\Delta_{r}G_{(g)}} Ag(EX_{3})_{2}^{+}(g) + 3CH_{2}Cl_{2}(g)$$

$$+ \Delta G_{(solv)}(\mathbf{A}) + \Delta H_{(subl)}(\mathbf{B}) + \Delta H_{(subl)}(\mathbf{B}) + \Delta G_{(solv)}(\mathbf{C}) + \Delta G_{(solv)}(\mathbf{C}) + \Delta H_{(vap)}(\mathbf{D})$$

$$Ag(CH_{2}Cl_{2})_{3}^{+}(solv) + 2EX_{3}(g) \xrightarrow{\Delta_{r}G_{(CH_{2}Cl_{2})}} Ag(EX_{3})_{2}^{+}(solv) + 3CH_{2}Cl_{2}(g)$$

Fig. A. The Born-Haber cycle for the formation of the $Ag(EX_3)_2^+$ complexes in solution for E = As, P and X = Br, I. The general formula $Ag(EX_3)_2^+$ denotes here the most favorable isomer: $(I_3P)Ag(PI_3)^+$, $(BrPBr_2)Ag(PBr_3)^+$ and for E = As and X = Br, I it is the $(XEX_2)Ag(X_2EX)^+$ isomer.

Tab. B. The enthalpies in the Born-Haber cycle (in kJ·mol⁻¹) of the formation of complexes Ag(EX₃)₂⁺ in the reaction Ag(CH₂Cl₂)₃⁺ + 2EX₃ \rightarrow Ag(EX₃)₂⁺ + 3CH₂Cl₂ (X = Br, I; E = As,

P). The letters A-D denotes ΔG or ΔH for the processes of sublimation, solvation or

E, X	Α	В	С	D	$\Delta_r G_{(g)}$	$\Delta G^{298K}_{\qquad (CH_2Cl_2)}$
As, Br	+158	+84	-158	-87	-26	-29
As, I	+158	+119	-149	-87	-64	-23
P, Br	+158	+78	-155	-87	-35	-41
P, I	+158	+88	$-147/-150^{b}$	-87	-70/-63 ^{b)}	$-58/-53^{a)}$

evaporation in the Fig. A.

^{a)} values calculated for the $(I_3P)Ag(I_2PI)^+$ isomer.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

$$Ag(CH_{2}Cl_{2})_{3}^{+}_{(g)} + EX_{3(g)} \xrightarrow{\Delta_{r}G_{(g)}} (CH_{2}Cl_{2})Ag(EX_{3})^{+}_{(g)} + 2CH_{2}Cl_{2(g)}$$

$$+ \Delta G_{(solv)}(\mathbf{A}) + \Delta H_{(subl)}(\mathbf{B}) \xrightarrow{-\Delta G_{(solv)}(\mathbf{C})} -\Delta H_{(vap)}(\mathbf{D})$$

$$Ag(CH_{2}Cl_{2})_{3}^{+}_{(solv)} + EX_{3(s)} \xrightarrow{\Delta_{r}G_{(CH_{2}Cl_{2})}} (CH_{2}Cl_{2})Ag(EX_{3})^{+}_{(solv)} + 2CH_{2}Cl_{2(l)}$$

Fig. B. The Born-Haber cycle for the formation in solution of the following complexes: $(CH_2Cl_2)Ag(X_2EX)^+$ for E = As; X = Br, I) and $(CH_2Cl_2)Ag(EX_3)^+$ (for E = P; X = Br, I). The general formula $Ag(EX_3)_2^+$ denotes here the most favorable isomer and does not express the appropriate geometry.

Tab. C. The enthalpies in the Born-Haber cycle (in kJ·mol⁻¹) of the formation of complexes $(CH_2Cl_2)Ag(EX_3)^+$ in the reaction $Ag(CH_2Cl_2)_3^+ + EX_3 \rightarrow (CH_2Cl_2)Ag(EX_3)^+ + 2CH_2Cl_2$ (X = Br, I; E = As, P). The letters A-D denotes ΔG or ΔH for the processes of sublimation, solvation or evaporation in the Fig. B.

E, X	Α	В	С	D	$\Delta_r G_{(g)}$	$\Delta G^{298K}_{(CH_2Cl_2)}$
As, Br	+158	+42	-165	-58	+3	-20
As, I	+158	+59	-160	-58	-22	-23
P, Br	+158	+39	-165	-58	-6	-32
P, I	+158	+44	-163	-58	-23	-42

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

$$Ag(CH_{2}Cl_{2})_{3}^{+}(g) + EX_{3}(g) + X_{2}(g) \xrightarrow{\Delta_{r}G_{(g)}} (EX_{3})Ag(X_{2})^{+}(g) + 3CH_{2}Cl_{2}(g)$$

$$+ \Delta G_{(solv)}(\mathbf{A}) + \Delta H_{(subl)}(\mathbf{B}) + \Delta H_{(subl)}(\mathbf{C}) \xrightarrow{-\Delta G_{(solv)}(\mathbf{D})} -\Delta H_{(vap)}(\mathbf{E})$$

$$Ag(CH_{2}Cl_{2})_{3}^{+}(solv) + EX_{3}(g) + X_{2}(g) \xrightarrow{\Delta_{r}G_{(CH_{2}Cl_{2})}} (EX_{3})Ag(X_{2})^{+}(solv) + 3CH_{2}Cl_{2}(g)$$

Fig. C. The Born-Haber cycle for the formation of the $(EX_3)Ag(X_2)^+$ complexes in solution for E = As, P and X = Br, I. The general complex formula $(EX_3)Ag(X_2)^+$ denotes different types of coordination. For every complex the most favorable geometry was taken.

Tab. D. The enthalpies for the formation of the most favorable complexes of type $(EX_3)Ag(X_2)^+$ in the reaction $Ag(CH_2Cl_2)_3^+ + EX_3 + X_2 \rightarrow (EX_3)Ag(X_2)^+ + 3CH_2Cl_2$ (X = Br, I; E = As, P) in the Born-Haber cycle (in kJ·mol⁻¹). The letters A-D denotes ΔG or ΔH for the processes of sublimation, solvation or evaporation in the Fig. C.

Type of $(EX_3)Ag(X_2)^+$ isomer formed	Α	В	С	D	E	$\Delta_r G_{(g)}$	$\Delta G^{298K}_{(CH_2Cl_2)}$
$(BrAsBr_2)Ag(Br)_2^+$	+158	+42	+31	-167	-87	+6	-17
$(I_3As)Ag(I_2)^+$	+158	+59	+63	-161	-87	-22	+10
$(Br_3P)(Br_2)Ag^+$	+158	+39	+31	-165	-87	-22	-46
$(I_3P)Ag(I_2)^+$	+158	+44	+63	-160	-87	-41	-23