Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

IR, ³¹P NMR and analytical data for **1-5**. IR spectra were obtained in dichloromethane solution, and ³¹P NMR in CDCl₃ at 121.42 MHz and referenced to external H₃PO₄.

Compound	ν(C≡C) /	$\delta (^{31}P)$	Formula	Analytical data (%)		
	cm ⁻¹	$(^{1}J_{\mathrm{PtP}}/\mathrm{Hz})$		Found (Calc.)		
				C	Н	N
1	2113	9.30	$C_{20}H_{34}NIO_2P_2Pt$	34.2	4.8	1.9
		(2298)		(34.1)	(4.9)	(2.0)
2	2115 ^a	9.24	$C_{21}H_{34}NIP_2Pt$	37.2	4.7	2.3
		(2294)		(36.9)	(5.0)	(2.1)
3	2098	11.90	$C_{28}H_{38}NIO_2P_2Pt$	42.0	4.6	1.9
		(2344)		(41.8)	(4.8)	(1.7)
4	$2099^{\rm b}$	11.83	$C_{29}H_{38}NIP_2Pt$	44.3	4.9	1.6
		(2348)		(44.4)	(4.9)	(1.8)
5	2101	12.03	$C_{28}H_{38}I_2P_2Pt$	37.9	4.5	-
		(2384)		(38.0)	(4.3)	

^a Also shows $v(C \equiv N)$ at 2226 cm⁻¹.

Synthetic procedures

[PtI(PEt₃)₂(-C≡C-C₆H₄-NO₂)] 1. [Pt(PEt₃)₂I₂] (0.095 g, 0.138 mmol), *p*-nitrophenylacetylide (0.022 g, 0.149 mmol) and copper iodide (10 mg) were dissolved in toluene (10 cm³) and diisopropylamine (0.5 cm³) was added to give a yellow solution. This solution was then stirred under nitrogen at room temperature for 1 h. After removal of the solvent under vacuum, the product was redissolved in toluene and filtered through celite. The product was then purified by silica column chromatography with toluene as eluent. The first yellow band eluted was unreacted Pt(PEt₃)₂I₂ (0.009 g, 0.013 mmol), and the second was the desired product PtI(PEt₃)₂(-C≡C-C₆H₄-NO₂), which following removal of the solvent was isolated as a yellow oil (0.072 g, 0.125 mmol, 82 %). Recrystallisation from hexane gave an analytical sample as yellow crystals.

[PtI(PEt₃)₂(-C=C-C₆H₄CN)] 2. [Pt(PEt₃)₂I₂] (0.200 g, 0.291 mmol), p-ethynylbenzonitrile (0.038 g, 0.299 mmol) and copper iodide (10 mg) were dissolved in toluene (10 cm³) and diisopropylamine (0.5 cm³), giving a yellow solution. This solution was then stirred under nitrogen at room temperature for 2 h. After removal of the solvent under vacuum, the product was redissolved in toluene and filtered

b Also shows v(C≡N) at 2225 cm⁻¹.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

through celite. The product was then purified by silica column chromatography with 8:1 toluene:dichloromethane as eluent. The first (yellow) band eluted was unreacted $Pt(PEt_3)_2I_2$ (0.043 g, 0.062 mmol), and the second (yellow-green) band (eluted with 5:1 toluene:dichloromethane) was the desired product $PtI(PEt_3)_2(-C \equiv C-C_6H_4-CN)$, which following removal of the solvent was isolated as a yellow-green oil (0.112 g, 0.163 mmol, 56 %). Recrystallisation from hexane gave an analytical sample as yellow-green needles.

[Pt(PEt₃)₂(C \equiv C-C₆H₄-NO₂)(C \equiv C-C₆H₄-I)] 3. 0.044 g (0.062 mmol) of PtI(PEt₃)₂(-C \equiv C-C₆H₄-NO₂), 0.022 g (0.088 mmol) of *p*-iodophenylacetylene and 5 mg of CuI were stirred for 24 h in a mixture of 10 cm³ of toulene and 0.5 cm³ of diisopropylamine, giving a yellow solution. After removal of the solvent under vacuum, the product was redissolved in toluene and filtered through celite. Following evaporation to dryness, the product was then purified by alumina column chromatography with 1:1 toluene:dichloromethane as eluent. Collection and evaporation of the first yellow band gave 0.039 g of Pt(PEt₃)₂(C \equiv C-C₆H₄-NO₂)(C \equiv C-C₆H₄-I) as a yellow solid (0.048 mmol, 77 %), which was recrystallised as yellow crystals from a refrigerated diethyl ether / hexane mixture.

[Pt(PEt₃)₂(-C≡C-C₆H₄-CN)(-C≡C-C₆H₄-I)] 4. 0.100 g of PtI(PEt₃)₂(-C≡C-C₆H₄-CN) (0.146 mmol), 0.035 g of *p*-iodophenylacetylide (0.153 mmol) and copper iodide (10 mg) were dissolved in toluene (10 cm³) and diisopropylamine (0.5 cm³) to give a pale yellow solution. This solution was then stirred under nitrogen at room temperature for 2 h. The solvent was removed under vacuum and the product was redissolved in toluene and filtered. Following evaporation to dryness, the product was then purified by alumina column chromatography with 1:1 toluene:dichloromethane as eluent, collecting the first yellow band visible. Evaporation of the solvent and recrystallisation from diethyl ether / hexane gave yellow / orange crystals of the product (0.052 g, 0.066 mmol, 45 %).

[Pt(PEt₃)₂(-C=C-C₆H₄-I)₂] 5. Pt(PEt₃)₂I₂ (0.100 g, 0.15 mmol), piodophenylacetylide, (0.097 g, 0.42 mmol) and copper iodide (10 mg) were dissolved
in toluene (10 cm³) and diisopropylamine (0.5 cm³) to give a pale yellow solution.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2005

This solution was then stirred under nitrogen at room temperature overnight. The solvent was removed under vacuum and the product was redissolved in toluene and filtered. Following removal of the solvent, the residual solid was recrystallised from ethyl acetate to give an off-white crystalline solid (0.036 g, 0.038 mmol, 26 %).