Supporting Information

Bis(isothiocyanato)bis(phosphine) complexes of group 10 metals: reactivity toward organic isocyanides

Xiaohong Chang^a, Kyung-Eun Lee^a, Sang Il Jeon^a, Yong-Joo Kim,*^a H. -K Lee^b and Soon W. Lee^b ^aDepartment of Chemistry, Kangnung National University, Kangnung 210-702, Korea ^bDepartment of Chemistry, Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Korea

Experimental

Data for Ni(NCS)₂(CN–C₆H₃-2,6-Me₂)(PMe₂Ph)₂, (1): v_{max}/cm^{-1} 2136 (N=C), 2072 (NCS); δ_{H} (300 MHz in CDCl₃): 1.90 (s, 12H, P(CH₃)₂Ph), 1.93 (s, 6H, CH₃), 6.96 (d, *J* = 7.9 Hz, Ph), 7.11–7.16 (m, 1H, Ph), 7.44–7.73 (m, 6H, Ph), 7.74–7.75 (m, 4H, Ph); δ_{C} (CDCl₃): 12.9 (s, P(CH₃)₂Ph), 18.4 (s, CH₃), 126.5, 128.0, 129.1, 129.7, 130.3, 131.1, 132.1 (s, NCS), 132.7, 135.1, 141.0 (S, Ph). The CNR carbon atom could not be assigned because of its low intensity. δ_{P} (CDCl₃) 11.0 (s).

Data for Ni(NCS)₂(CN-*t***-Bu)(PMe₂Ph)₂, (2): v_{max}/cm^{-1} 2186 (N=C), 2093, 2078 (NCS); \delta_{H} (300 MHz in CDCl₃): 1.06 (s, 9H, C(CH₃)₃), 1.86 (s, 12H, P(CH₃)₂Ph), 7.50– 7.54 (m, 6H, Ph), 7.79–7.83 (m, 4H, Ph).); \delta_{C} (CDCl₃) 13.0 (br, P(CH₃)₂Ph), 29.6 (s, CH₃), 59.3 (s,** *C***(CH₃)₃), 129.1, 130.5, 131.1, 132.7 (s, NCS), 139.5 (s, Ph); \delta_{P} (CDCl₃) 14.4 (s).**

Data for $[Ni(P(n-Pr)_3)_2(CN-t-Bu)_3]^{2+}[Ni(1,3-\mu-NCS)(NCS)_3]_2^{2-}$, (3) ·(4): $\mu_{eff} = 2.71$ $\mu_B. \nu_{max}/cm^{-1}$ 2168 (N=C), 2074 (NCS); δ_H (300 MHz in CDCl₃) 1.14 (t, J = 7.0 Hz, 18H, P(CH₂CH₂CH₃)₃), 1.60 (s, 27H, C(CH₃)₃), 1.64 (br, P(CH₂CH₂CH₃)₃), 1.92 (br, P(CH₂CH₂CH₃)₃); δ_P (CDCl₃) 24.9 (br).

Data for $[Ni(P(n-Pr)_3)_2(CN-t-Bu)_2](SCN)_2$: $\mu_{eff} = 0.98 \ \mu_B. \ v_{max}/cm^{-1} \ 2167 \ (N=C),$ 2098, 2047 (NCS); δ_H (300 MHz in CDCl₃) 1.14 (t, $J = 7.1 \ Hz, 18H, P(CH_2CH_2CH_3)_3),$ 1.57 (s, 18H, C(CH₃)₃), 1.68 (br, P(CH₂CH₂CH₃)₃), 1.82 (br, P(CH₂CH₂CH₃)₃); δ_P (CDCl₃) 24.1 (br).

Data for Pd(NCS)(SCN)(CN–*t*-Bu)(P(*n*-Pr)₃), (5): v_{max} /cm⁻¹ 2218 (N≡C), 2096, 2064 (NCS). δ_H (300 MHz in CDCl₃ at −60 °C) 1.14 (t, *J* = 7.0 Hz, 9H, P(CH₂CH₂CH₃)₃),

1.61 (br, 6H, P(CH₂CH₂CH₃)₃), 1.72 (s, 9H, C(CH₃)₃), 2.15 (br, 6H, P(CH₂CH₂CH₂CH₃)₃); δ_{C} (CDCl₃) 15.9 (d, J = 17 Hz, P(CH₂CH₂CH₃)₃, 16.8 (d, 137.7 Hz, P(CH₂CH₂CH₃)₃), 26.6 (br, P(CH₂CH₂CH₃)₃), 29.4 (s, C(CH₃)₃), 60.9 (s, C(CH₃)₃), 129.9 (s, NCS). The CNR carbon atom could not be assigned because of its too low intensity. δ_{P} (CDCl₃) 12.4 (s).

Data for {Pd(CN-*i*-Pr)₂[P(*n*-Pr)₃]₂}(SCN)₂ (6): v_{max}/cm^{-1} 2224 (N=C), 2096, 2052 (NCS); δ_{H} (300 MHz in CDCl₃) 1.13 (t, *J* = 7.1 Hz, 18H, P(CH₂CH₂CH₃)₃), 1.53 (d, *J* = 6.6 Hz, 12H, CH(CH₃)₂), 1.63 (m, 12H, P(CH₂CH₂CH₃)₃), 2.08 (m, 12H, P(CH₂CH₂CH₃)₃), 4.46 (sep, *J* = 6.6 Hz, CH(CH₃)₃); δ_{C} (CDCl₃) 15.8 (t, *J* = 7.2 Hz, P(CH₂CH₂CH₃)₃, 17.9 (s, P(CH₂CH₂CH₃)₃), 22.6 (s, CH(CH₃)₂), 26.6 (t, *J* = 14 Hz, P(CH₂CH₂CH₃)₃), 48.8 (s, CH(CH₃)₂), 132.5 (s, NCS). The CNR carbon atom could not be assigned because of its low intensity. δ_{P} (CDCl₃) 15.7 (s).

Data for [Pd(CN–*t*-Bu)₂(PMe₃)₂](SCN)₂ (7); v_{max}/cm^{-1} 2227 (N≡C), 2047 (NCS); δ_{H} 1.56 (s, 18H, P(CH₃)₃), 1.75 (br , 18H, C(CH₃)₃); δ_{C} (DMSO-d₆) 14.9 (br, P(CH₃)₃), 28.9 (s, C(CH₃)₃), 60.3 (s, C(CH₃)₃); δ_{P} (DMSO-d₆): –7.31 (s). Data for [Pd(CN–*t*-Bu)₂(PMePh₂)₂](SCN)₂ (8); v_{max} /cm⁻¹ 2229 (N≡C), 2068 (NCS); δ_H (300 MHz in CDCl₃) 0.97 (s, 18H, C(CH₃)), 2.56 (s, 6H, PCH₃Ph₂), 7.56–7.63 (m, 12H, Ph), 7.82–7.87 (m, 8H, Ph); δ_C (CDCl₃) 14.6 (br, PCH₃Ph₂), 29.2 (s, C(CH₃)₃), 59.5 (s, C(CH₃)₃), 129.2, 129.5, 130.7, 132.0, 132.4(s, Ph); δ_P (CDCl₃) 7.29 (s).

Data for [Pd(CN–*i*-Pr)₂(PMe₃)₂](SCN)₂ (9); v_{max}/cm^{-1} 2229 (N=C), 2054 (NCS); δ_{H} (300 MHz in CDCl₃) 1.57 (d, J = 6.6 Hz, 12H, CH(CH₃)₂), 1.89 (s, 18H, P(CH₃)₃), 4.44 (sep, J = 6.6 Hz, CH(CH₃)₂); δ_{C} (CDCl₃) 16.0 (br, P(CH₃)₃), 22.5 (s, C(CH₃)₂), 50.4 (s, C(CH₃)₂), 129.9 (NCS); δ_{P} (CDCl₃) –9.12 (s).

Data for [Pd(CN–C₆H₃-2,6-Me₂)₂(PMePh₂)₂](SCN)₂ (10): v_{max}/cm^{-1} 2189 (N=C), 2070 (NCS); δ_{H} (300 MHz in CDCl₃) 2.12 (s, 12H, CH₃), 2.51 (s, 6H, PCH₃Ph₂), 6.99 (br, 4H, Ph), 7.13–7.18 (m, 2H, Ph), 7.39–7.43 (m, 12H, Ph), 7.73–7.76 (m, 8H, Ph); δ_{C} (CDCl₃) 13.5 (br, PCH₃Ph₂), 18.6 (s, CH₃), 125.5, 127.8, 129.1, 129.7, 131.0, 131.5, 132.5, 135.2 (s, Ph).); δ_{P} (CDCl₃) 10.7 (s).

Data for [Pt(CN-C₆H₃-2,6-Me₂)₂(PMe₃)₂](SCN)₂, (11); v_{max}/cm^{-1} 2192 (N=C), 2051 (NCS); δ_{H} (300 MHz in CDCl₃) 2.09 (t, J = 3.8 Hz, J_{PtH} = 27 Hz, 18H, P(CH₃)₃), 2.58 (s,

12 H, CH₃), 7.18–7.21 (m, 4H, Ph), 7.29–7.36 (m, 2H, Ph); δ_{C} (CDCl₃) 15.9 (t, J = 19 Hz, P(*C*H₃)₃), 19.1 (s, CH₃), 125.0, 128.6, 130.8 (s, NCS), 131.1, 136.2 (s, Ph).); δ_{P} (CDCl₃) –22.8 (s, $J_{PtP} = 1996$ Hz).

Data for [Pt(CN–C₆H₃-2,6-Me₂)₂(PEt₃)₂](SCN)₂, (12); v_{max}/cm^{-1} 2189 (N=C), 2071, 2052 (NCS); \delta_{H} (300 MHz in CDCl₃) 1.26 (m, 18H, P(CH₂CH₃)₃), 2.27 (m, 12H, P(CH₂CH₃)₃), 2.51 (s, 12H, CH₃), 7.19–7.21 (m, 4H, Ph), 7.29–7.35 (m, 2H, Ph); \delta_{C} (CDCl₃) 8.09 (s, P(CH₂CH₃)₃), 16.5 (t, *J* **= 17 Hz, P(CH₂CH₃)₃), 18.9 (s, CH₃), 117.8, 128.5, 130.6 (br, NCS), 135.4 (s, Ph); \delta_{P} (CDCl₃) 16.3 (s,** *J***_{PtP} = 1974 Hz).**

Data for [Pt(CN–C₆H₃-2,6-Me₂)₂(P(*n*-Pr)₃)₂](SCN)₂, (13): v_{max}/cm^{-1} 2194 (N=C), 2048 (NCS); δ_H (300 MHz in CDCl₃) 1.08 (t, *J* = 7.2 Hz, 18H, P(CH₂CH₂CH₂CH₃)₃), 1.68 (m, 12H, P(CH₂CH₂CH₃)₃), 2.18 (m, 12H, P(CH₂CH₂CH₃)₃), 2.50 (s, 12H, CH₃), 7.18 (d, *J* = 7.7 Hz, 4H, Ph), 7.27–7.32 (m, 2H, Ph); δ_C (CDCl₃) 15.8 (t, *J* = 7.4 Hz, P(CH₂CH₂CH₃)₃, 17.9 (s, *J*_{PtC} = 17 Hz, P(CH₂CH₂CH₃)₃), 18.9 (s, CH₃), 26.1 (t, *J* = 16 Hz, P(CH₂CH₂CH₃)₃), 116.9, 128.5, 130.2 (s, NCS), 135.2, 145.1 (s, Ph). The carbon atom of CNR could not be assigned due to its weak intensity. δ_P (CDCl₃) 9.14 (s, *J*_{PtP} = 1946 Hz). **Data for [Pd(CN-***i***-Pr)(SCN)(PEt₃)₂](SCN), (14)**: v_{max}/cm^{-1} 2249 (N=C), 2114, 2057 (NCS); δ_{H} (300 MHz in CDCl₃) 1.29 (q, J = 7.3 Hz, 18H, P(CH₂CH₃)₃), 1.57 (d, J = 6.6 Hz, 6H, C(CH₃)₂), 2.14 (m, 12H, P(CH₂CH₃)₃); δ_{C} (CDCl₃) 8.31 (s, P(CH₂CH₃)₃), 16.3 (br, P(CH₂CH₃)₃), 22.4 (s, C(CH₃)₂), 51.0 (s, C(CH₃)₂), 132.0 (br, NCS); δ_{P} (CDCl₃) 22.6 (s).

Data for [Pd(CN–C₆H₃-2,6-Me₂)(SCN)(PEt₃)₂](SCN), (15): v_{max}/cm^{-1} 2196 (N=C), 2106, 2056 (NCS); \delta_{H} (300 MHz in CDCl₃) 1.26 (q, J = 7.3 Hz, 18H, P(CH₂CH₃)₃), 2.06 (br, 12H, P(CH₂CH₃)₃), 2.49 (s, 6H, CH₃), 7.13–7.16 (m, 2H, Ph), 7.23–7.28 (m, 1H, Ph); \delta_{C} (CDCl₃) 8.18 (s, P(CH₂CH₃)₃), 15.5 (br, P(CH₂CH₃)₃), 19.0 (s, CH₃), 128.2, 129.6, 132.5 (br, NCS), 140.0 (s, Ph); \delta_{P} (CDCl₃) 23.3 (s).

Data for [Pd(CN–C₆H₃-2,6-*i*-Pr₂)₂(PMe₃)₂](SCN)₂, (16): v_{max}/cm^{-1} 2196 (N=C), 2055 (NCS); δ_{H} (300 MHz in CDCl₃) 1.32 (d, J = 7.9 Hz, 24H, CH(CH₃)₂), 1.82 (s, 18 H, P(CH₃)₃), 3.40 (sep, J = 6.9 Hz, 4H, CH(CH₃)₂), 7.23 (d, J = 7.9 Hz, Ph), 7.44 (t, J = 7.9 Hz, 2H, Ph); δ_{C} (CDCl₃) 15.1 (br, P(CH₃)₃), 23.1 (s, CH(CH₃)₂), 30.0 (s, CH(CH₃)₂), 122.2, 123.9, 126.6, 130.0 (s, NCS), 145.8 (s, Ph); δ_{P} (CDCl₃) -6.59 (s).

Data for [Pt(CN–C₆H₃-2,6-*i***-Pr₂)₂(PMe₃)₂](SCN)₂, (17): v_{max}/cm^{-1} 2195 (N=C), 2059 (NCS); \delta_{H} (300 MHz in CDCl₃) 1.34 (d, J = 6.8 Hz, 24H, CH(CH₃)₂), 1.82 (s, J_{PtH} = 23 Hz, 18 H, P(CH₃)₃), 3.43 (sep, J = 6.8 Hz, 4H, CH(CH₃)₂), 7.28 (d, J = 7.8 Hz, Ph), 7.48 (t, J = 7.8 Hz, 2H, Ph); \delta_{C} (CDCl₃) 15.8 (t, J = 19 Hz, P(CH₃)₃), 23.3 (s, CH(CH₃)₂), 29.9 (s, CH(CH₃)₂), 122.3, 124.1, 130.6 (s, NCS), 131.5, 146.3 (s, Ph); \delta_{P} (CDCl₃) – 21.0 (s, J_{PtP} = 1960 Hz).**

Data for Ni(CN–C₆H₃-2,6-*i*-Pr₂)(NCS)₂(PMe₃)₂, 18: v_{max}/cm^{-1} 2163 (N=C), 2102, 2047 (NCS); δ_H (300 MHz in CDCl₃) 1.31 (d, J = 6.8 Hz, 12H, CH(CH₃)₂), 1.56 (s, 18 H, P(CH₃)₃), 3.38 (sep, J = 6.8 Hz, 2H, CH(CH₃)₂), 7.24 (d, J = 7.7 Hz, 2H, Ph), 7.42 (t, J = 7.9 Hz, 1H, Ph); δ_C (CDCl₃) 14.5 (t, J = 16 Hz, P(CH₃)₃), 23.3 (s, CH(CH₃)₂), 30.0 (s, CH(CH₃)₂), 123.0, 124.0, 130.5, 133.9 (s, NCS), 145.6 (s, Ph); δ_P (CDCl₃) 10.6 (s).

Data for Pt(NCS)₂(depe); v_{max}/cm⁻¹ 2125, 2098, 2056 (NCS): δ_H (300 MHz in DMSOd₆) 1.20 (m, 12H, -P(CH₂CH₃)₂), 2.01–2.30 (m, 12 H, -P(CH₂CH₃)₂); δ_P (DMSO-d₆) 50.5 (bd, *J* = 142 Hz, *J*_{PtP} = 3377 Hz), 63.3 (s, *J*_{PtP} = 3076 Hz), 63.6 (s, *J*_{PtP} = 3034 Hz). Data for $[Pt(depe)_2](SCN)_2$, (19):. IR (KBr, cm⁻¹): v_{max}/cm^{-1} 2052 (NCS); δ_H (300

MHz in DMSO-d₆) 1.11 (m, 12H, -P(CH₂CH₃)₂), 2.10-2.50 (m, 12 H, -P(CH₂CH₃)₂); δ_P

 $(DMSO-d_6)$ 58.3 (s, J_{PtP} = 2124 Hz).