Ligand Effect on the Kinetics of Hydroperoxochromium(III) - Oxochromium(V) Transformation and the Lifetime of Chromium(V)

Kelemu Lemma, Arkady Ellern and Andreja Bakac*

Contribution from the Chemistry Department, Iowa State University of Science and Technology,

Ames, IA 50011

Figure S1. Plot of k_{obs} vs $[O_2]$ for O_2 binding to $L^2Cr(H_2O)_2^{2^+}$. The intercept is the sum of all the first- or pseudo-first-order rate constants for disappearance of $L^2Cr(H_2O)_2^{2^+}$ except for the reaction with O_2 .

Figure S2. Plot of $\ln (k_1/T) vs 1/T$ for the formation of $L^2Cr(V)$.

Figure S3. Plots of $\ln (k_2/T) vs 1/T$ for the decay of $L^2Cr(V)$.

Figure S4. Plot of $k_{obs} vs$ [ABTS²⁻] for the reaction between L²(H₂O)CrOO²⁺ and ABTS²⁻ at [H⁺] = 20 mM. Traces were exponential at low (<0.04 mM) and high (>0.15 mM) concentrations of ABTS²⁻, but exhibited approximately biphasic behavior in the intermediate regime. The rate constants k_{obs} shown for the intermediate regime are approximate values obtained from single-exponential fits. The rate constants for the initial redox step between L²(H₂O)CrOO²⁺ and ABTS²⁻, and k₁, were obtained from the data in the limits of low and high [ABTS²⁻], respectively.

Figure S5. Plot of $k_{obs}/[\Gamma]$ vs. $[H^+]$ for the reaction of $L^2(H_2O)CrOO^{2+}$ with Γ .

Figure S1. Plot of k_{obs} vs $[O_2]$ for O_2 binding to $L^2Cr(H_2O)_2^{2^+}$. The intercept is the sum of all the first- or pseudo-first-order rate constants for disappearance of $L^2Cr(H_2O)_2^{2^+}$ except for the reaction with O_2 .

Figure S2. Plot of $\ln (k_1/T) vs 1/T$ for the formation of $L^2Cr(V)$.

Figure S3. Plots of $\ln (k_2/T) vs 1/T$ for the decay of $L^2Cr(V)$.

Figure S4. Plot of $k_{obs} vs$ [ABTS²⁻] for the reaction between L²(H₂O)CrOO²⁺ and ABTS²⁻ at [H⁺] = 20 mM. Traces were exponential at low (<0.04 mM) and high (>0.15 mM) concentrations of ABTS²⁻, but exhibited approximately biphasic behavior in the intermediate

regime. The rate constants k_{obs} shown for the intermediate regime are approximate values obtained by forcing the fit to a single-exponential equation . The rate constants for the initial redox step between $L^2(H_2O)CrOO^{2+}$ and $ABTS^{2-}$, and k_1 , were obtained from the data in the limits of low and high [ABTS²⁻], respectively.

Figure S5. Plot of $k_{obs}/[I^-] vs [H^+]$ for the reaction of $L^2(H_2O)CrOO^{2+}$ with I⁻.