Design of base metal extractants. Part 1. Inter-ligand hydrogen bonding in the assembly of *pseudo*-macrocyclic bis(aminosulfonamidato)M(II) complexes.

Clare Squires,^{*a*} Christopher W. Baxter,^{*a*} John Campbell,^{*b*} Leonard F. Lindoy,^{*c*} Hamish McNab,^{*a*} Andrew Parkin,^{*a*} Simon Parsons,^{*a*} Peter A. Tasker,^{*a*} Gang Wei^{*c*} and David J. White.^{*a*}

^a School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3JJ. E-mail: p.a.tasker@ed.ac.uk.

^b Cytec Industries Ltd., Blackley, Manchester, M9 8ZS

^c Centre for Heavy Metals Research, School of Chemistry F11, University of Sydney, N.S.W., 2006, Australia

N-[*N*-(2-Ethylhexyl)-2-aminoethyl]-4-methylbenzenesulfonamide (**4**) was similarly prepared from **1** and 2-ethylhexanal as a colourless oil (88%), (Found: C, 62.3; H, 10.0; N, 8.6. Calc. for C₁₇H₃₀N₂O₂S: C, 62.39; H, 9.47; N, 8.56), $\delta_{\rm H}$ (CDCl₃, 360 MHz): 0.84 (t, 3 H, J 7.2, CH₃), 0.92 (t, 3 H, J 7.0, CH₃), 1.27 (m, 8 H, CH₂), 2.35 (d, 2 H, J 5.6, CH₂), 2.45 (s, 3 H, CH₃), 2.69 (t, 2 H, J 5.6, CH₂), 3.00 (t, 2 H, J 5.6, CH₂), 7.32 (d, 2 H, J 7.9, Ar CH), 7.78 (d, 2 H, J 8.3, Ar CH), $\delta_{\rm C}$ (CDCl₃ 63 MHz): 11 (CH₃), 14 (CH₃), 21 (CH₃), 23 (CH₂), 24 (CH₂), 29 (CH₂), 31 (CH₂), 39 (CH), 42 (CH₂), 52 (CH₂), 127 (2 C, Ar CH), 129 (2 C, Ar CH), 137 (Ar C), 143 (Ar C), IR (NaCl)/cm⁻¹: 661s, 815s, 1034m, 1094s, 1158s, 1304s, 1458s, 1599m, 2873s, 2958s, 3286m, ESI MS, *m/z* 327 (MH⁺, 100.0%)

N-(3-Aminopropyl)-4-*tert*-butylbenzenesulfonamide (6) was obtained from 1,3diaminopropane by the procedure used for **2** as a white crystalline solid after recrystallisation from water and drying *in vacuo* (24%), mp 226°C (Found: C, 50.4; H, 6.7; N, 12.8. Calc. for C₁₃H₂₂N₂O₂S: C, 50.45; H, 6.59; N, 13.07%), $\delta_{\rm H}$ (CDCl₃, 200 MHz): 1.30 (s, 9 H, CH₃), 1.59 (tt, 2 H, J 6.2, CH₂), 2.80 (t, 2 H, J 6.1, CH₂), 3.07 (t, 2 H, J 6.3, CH₂), 7.50 (d, 2 H, J 8.8, Ar CH), 7.77 (d, 2 H, J 8.8, Ar CH), $\delta_{\rm C}$ (DMSO-*d*₆, 63 MHz): 30 (CH₂), 31 (3 C, CH₃), 35 (Ar *C*(CH₃)₃), 38 (CH₂), 38 (CH₂), 126 (2 C, Ar CH), 126 (2 C, Ar CH), 138 (Ar C), 155 (Ar C), IR (KBr disc)/cm⁻¹: 2961s, 1596m, 1542w, 1465m, 1329s, 1156s, FAB MS, *m/z* 271 (MH⁺, 100.0%).

N-(*N*-Benzyl-3-aminopropyl)-4-methylbenzenesulfonamide (7) was obtained by the procedure described for **3** from benzaldehyde and **5** as a white crystalline solid after recrystallisation from ethanol (38%), mp 82-84°C (Found: C, 63.9; H, 6.8; N, 8.8. Calc. for C₁₇H₂₂N₂O₂S: C, 64.10; H, 6.96; N, 8.80%), $\delta_{\rm H}$ (CDCl₃, 200 MHz) 1.61 (tt, 2 H, J 6.0, *CH*₂), 2.40 (s, 3 H, *CH*₃), 2.65 (t, 2 H, J 5.9, *CH*₂), 3.03 (t, 2 H, J 6.0, *CH*₂), 3.69 (s, 2 H, *CH*₂), 7.27 (m, 7 H, Ar *CH*), 7.70 (d, 2 H, J 8.3, Ar *CH*), $\delta_{\rm C}$ (CDCl₃, 50 MHz) 21 (*C*H₃), 28 (*C*H₂), 48 (*C*H₂), 54 (*C*H₂), 127 (2 C, Ar *C*H), 127 (Ar *C*H), 128 (2 C, Ar *C*H), 128 (2 C, Ar *C*H), 129 (2 C, Ar *C*H), 137 (Ar *C*), 140 (Ar *C*), 143 (Ar *C*), IR (KBr disc)/cm⁻¹: 1156s, 1185w, 1326s, 1454m, 1477m, 1497m, 1598m, 2832s, 2873w, 2933w, 2964w, 3059m, 3467w, FAB MS, *m*/z 319 (MH⁺, 100%).

N-[*N*-(2-Ethylhexyl)-3-aminopropyl]-4-methylbenzenesulfonamide (8) was obtained by the procedure described for 3 from 2-ethylhexanal and 5 as a colourless oil (66%),

(Found: C, 63.5; H, 9.6; N, 8.2. Calc. for $C_{18}H_{32}N_2O_2S$: C, 63.49; H, 9.47; N, 8.22%), δ_H (CDCl₃, 360 MHz): 0.90 (t, 3 H, J 7.3, CH₃), 0.93 (t, 3 H, J 6.7, CH₃), 1.62 (t, 2 H, J 5.5, CH₂), 2.67 (t, 2 H, J 5.6, CH₂), 2.45 (s, 5 H, CH₂, CH₃), 3.08 (t, 2 H, J 5.7, CH₂), 5.90 (m, 9 H, CH, 3 x CH₂), 7.32 (d, 2 H, J 8.1, Ar CH), 7.76 (d, 2 H, J 8.1, Ar CH), δ_C (CDCl₃, 90 MHz): 11 (CH₃), 14 (CH₃), 21 (CH₃), 23 (CH₂), 24 (CH₂), 29 (CH₂), 31 (CH₂), 39 (CH), 42 (CH₂), 52 (CH₂), 127 (2 C, Ar CH), 129 (2 C, Ar CH), 137 (Ar C), 143 (Ar C), IR (NaCl)/cm⁻¹: 515s, 659s, 1036m, 1095s, 1164s, 1328s, 1458s, 1496m, 1599m, 2362w, 2873s, 2928s, 3292m, ESI MS, m/z 341 (MH⁺, 100.0%).

N-(*N*-Butyl-3-aminopropyl)-4-methylbenzenesulfonamide (**9**) was obtained by the procedure described for **3** from *n*-butanal and **5** as a sticky white solid which proved difficult to purify. Crystals suitable for X-ray structure determination separated directly from the oil obtained after evaporation of methanol for 5 days, $\delta_{\rm H}$ (CDCl₃, 250 MHz): 0.91 (t, 3 H, J 7.1, CH₃), 1.46 (m, 6 H, CH₂), 2.41 (s, 3 H, CH₃), 2.53 (t, 2 H, J 7.0, CH₂), 2.68 (t, 2 H, J 5.8, 2 H, CH₂), 3.05 (t, 2 H, J 5.9, CH₂), 7.29 (d, 2 H, J 8.0, Ar CH), 7.73 (d, 2 H, J 8.3, Ar CH), EI MS, m/z 285 (MH⁺, 100.0%).

N-(2-Aminophenyl)-4-methylbenzenesulfonamide (10) was prepared by the method of Cheng *et al.*^{δ}

N-(2-Aminophenyl)-4-*tert*-butylbenzenesulfonamide (11) was prepared by an adaptation of the method for 10. A solution of 4-*tert*-butylbenzenesulfonyl chloride (5.35 g, 23 mmol) in pyridine (50 cm³) was added dropwise to a solution of 1,2-diaminobenzene

(7.25 g, 67 mmol) in pyridine (100 cm³) over 8 hours. The mixture was quenched with hydrochloric acid (15% aq, 300 cm³), poured onto ice (500 g), and the resulting pale brown precipitate collected, dried and recrystallised from ethanol (100 cm³) to give **11** as a white crystalline solid (3.30 g, 47%), mp 135-136°C (Found: C, 63.2; H, 6.6; N, 9.2. Calc. for $C_{16}H_{20}N_2O_2S$: C, 63.13; H, 6.62; N, 9.20 %), δ_H (CDCl₃, 200 MHz): 1.31 (s, 9 H, CH₃), 4.02 (s, 2 H, NH₂), 6.49-6.52 (m, 2 H, Ar CH), 6.69 (s, 1 H, NH), 6.70-6.73 (m, 1 H, Ar CH), 6.98-7.05 (m, 1 H, Ar CH), 7.44 (d, 2 H, J 8.8, Ar CH), 7.66 (d, 2 H, J 8.8, Ar CH), δ_C (CDCl₃, 63 MHz): 31 (3C, CH₃), 35 (Ar *C*(CH₃)₃), 117 (Ar, CH), 118 (Ar, CH), 121 (Ar *C*), 126 (Ar, CH), 127 (Ar, CH), 128 (Ar, CH), 129 (Ar, CH), 136 (Ar *C*), 144 (Ar *C*), 157 (Ar *C*), IR (KBr disc)/cm⁻¹: 3465m, 3387s, 2965s, 2869m, 1625s, 1597s, 1464s, 1324s, FAB MS, *m/z* 305 (MH⁺, 100.0%).

Bis[*N*-(2-aminoethyl)-4-methylbenzenesulfonamidato]cobalt(II) (**14**) was prepared using the same procedure as for **13** from cobalt(II) acetate tetrahydrate as a brown crystalline solid (46%), (Found: C, 44.5; H, 5.4; N, 11.4. Calc. for $C_{18}H_{26}N_4CoO_4S_2$: C, 44.53; H, 5.40; N, 11.54%), IR (KBr disc)/cm⁻¹: 1158m, 1372w, 1583m, 1626m, 2966w, 292w, 3683w, 3289s, 3448m. FAB MS, *m/z* 486 (MH⁺, 54.1%).

Bis[*N*-(2-aminoethyl)-4-*tert*-butylbenzenesulfonamidato]copper(II) (**16**) was prepared from **2** in a similar manner to **15** as a purple crystalline solid (59%). Crystals suitable for X-ray structure determination were obtained by the diffusion of diethyl ether into a concentrated solution in methanol, (Found: C, 50.2; H, 6.8; N, 9.6. Calc. for

C₂₄H₃₈N₄CuO₄S₂: C, 50.02; H, 7.00; N, 9.72%), IR (KBr disc)/cm⁻¹: 835m, 981m, 1129m, 1252s, 1655m, 1686m, 2986m, 3632m, ESI MS, *m/z* 574 (MH⁺, 65.0%).

Bis {N-[N-(2-ethylhexyl)-2-aminoethyl]-4-methylbenzenesulfonamidato} cobalt(II) (18) was prepared in a similar manner to 17 from cobalt(II) acetate tetrahydrate as a purple solid (32%), IR (KBr disc)/cm⁻¹: 668w, 1161w, 1332w, 1412w, 1560s, 2361w, 2961w, 3464m, FAB MS, m/z 709 (MH⁺, 96.0%), HRMS m/z calc. for C₃₄H₅₉N₄CoO₄S₂ 710.3309, found 710.3314.

Bis {N-[N-(2-ethylhexyl)-2-aminoethyl]-4-methylbenzenesulfonamidato} copper(II) (19) was prepared in a similar manner to 17 from copper(II) acetate monohydrate as a purple solid (51%), (Found: C, 57.10; H, 8.14; N, 7.80. Calc. for C₃₄H₅₈N₄CuO₄S₂: C, 57.15; H, 8.18; N, 7.84%). IR data (KBr disc)/cm⁻¹: 667s, 1136s, 1274m, 1558s, 1685m, 2343m, 2362m, 2929m, 3447m. FAB MS, m/z 714 (MH⁺, 10.1%).

Bis[*N*-(2-aminopropyl)-4-methylbenzenesulfonamidato]cobalt(II) (**20**) was prepared in a similar manner to **15** from **5** and cobalt(II) acetate tetrahydrate, collecting the purple crystals after 3 days, washing with methanol (3 x 5 cm³) and drying *in vacuo* (36%), (Found: C, 46.5; H, 6.1; N, 10.6. Calc. for $C_{20}H_{30}N_4CoO_4S_2$: C, 46.78; H, 5.89; N, 10.91%), IR (KBr disc)/cm⁻¹: 709w, 1134s, 1684w, 3332m, 2929w, 2878w, 2846w, ESI MS, *m/z* 514 (MH⁺, 6.3%).

Bis[*N*-(2-aminopropyl)-4-methylbenzenesulfonamidato]zinc(II) (**23**) was prepared by the procedure for **20** using zinc(II) acetate dihydrate as white crystals (38%), (Found: C, 46.1; H, 5.4; N, 10.8. Calc. for $C_{20}H_{30}N_4O_4S_2Zn$: C, 46.20; H, 5.82; N, 10.78%), IR (KBr disc)/cm⁻¹: 709w, 1173m, 1590m, 1653w 2848w, 2884w, 2934w, 3340m, ESI MS, *m/z* 519 (MH⁺, 10.9%).

Bis[*N*-(2-aminophenyl)-4-methylbenzenesulfonamidato]nickel(II) (**25**) was prepared by the procedure for **15** from **10** and nickel(II) acetate tetrahydrate as a pale green solid (93%), (Found: C, 53.7; H, 4.4; N, 9.6. Calc. for $C_{26}H_{26}N_4NiO_4S_2$: C, 53.63; H, 4.50; N, 9.62%), IR (KBr disc)/cm⁻¹: 706w, 1163w, 1493s, 1599m, 3025w, 3448m, FAB MS, *m/z* 581 (MH⁺, 7.2%).

Bis[*N*-(2-aminophenyl)-4-methylbenzenesulfonamidato]zinc(II) (**27**) was prepared as described for **25** using zinc(II) acetate dihydrate as white crystals (45%), (Found: C, 52.9; H, 4.56; N, 9.5. Calc. for $C_{26}H_{26}N_4O_4S_2Zn$: C, 53.11; H, 4.46; N, 9.53%), IR (KBr disc)/cm⁻¹: 707w, 1160w, 1197w, 1264s, 1306s, 1542w, 1601m, 3035w, 3065w, 3259s, 3335s, FAB MS, *m/z* 587 (MH⁺, 5.7%).

D-Н 1	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>Α</th></dha<>	d(DA)	Α
N3A-H3A	0.997	1.856	168.92	2.841	N6B
N6A-H6AA	0.996	2.14	154.58	3.07	O1B [$x-1, y+1, z$]
N6A-H6AA	0.996	2.884	174.18	3.875	S2B [x-1, y+1, z]
N3B-H3B	0.978	1.848	176.05	2.824	N6A [x, y-1, z]
N6B-H6AB	0.974	2.159	165.09	3.11	O1A[x+1, y, z]
N6B-H6BB	0.951	2.284	153.28	3.163	O2B[x, y+1, z]
5					
N3A-H3A	0.951	1.959	173.98	2.906	N7A [-x+1, y+1/2, -z+1/2]
N7A-H7AA	0.945	2.441	134.42	3.175	O1A [x, y-1, z]
N7A-H7BA	0.867	2.414	165.41	3.261	O2A [-x+1, -y, -z]
7					
N3A-H3A	0.984	1.981	175.56	2.964	N7A [-x+1, -y+2, z-1/2]
9					
N7A-H7A	0.846	2.404	143.32	3.124	O1A [-x+1, -y+1, -z+1]
N3A-H3A	0.821	2.159	166.76	2.964	N7A [-x+1, y-1/2, -z+3/2]
10					
N3A-H3A	0.755	2.066	174.34	2.819	O2A [-x+1, y-1/2, -z+1]
N6A-H6BA	0.869	2.516	126.6	3.114	O1A
N6A-H6BA	0.869	2.966	126.12	3.549	S2A
N3B-H3B	0.672	2.274	174.96	2.944	O1B [-x+1, y+1/2, -z]
N6B-H6BB	0.908	2.404	145.65	3.194	O1B [-x+1, y-1/2, -z]
N6B-H6BB	0.908	2.563	125.36	3.176	O2B
N6B-H6BB	0.908	3.02	124.67	3.614	S2B
12					
N6A-H6A1	0.91	2.143	163.84	3.028	O1M [-x+2, -y-1, -z]
N6A-H6A2	0.91	2.32	125.4	2.942	O1A [x, -y-3/2, z+1/2]
N6B-H6B1	0.91	2.242	144.22	3.027	O1B [x, -y-3/2, z+1/2]
N6B-H6B1	0.91	3.015	118.19	3.537	S2B [x, -y-3/2, z+1/2]
N6B-H6B2	0.91	2.153	156.23	3.009	O2A [x, -y-3/2, z+1/2]
N6B-H6B2	0.91	2.884	155.39	3.731	S2A [x, -y-3/2, z+1/2]
N6C-H6C1	0.91	2.167	141.7	2.935	O1C [x, -y-1/2, z+1/2]
N6C-H6C2	0.91	1.995	163.34	2.878	O2M
N6D-H6D1	0.91	2.305	157.35	3.165	O2C [x, -y-1/2, z+1/2]
N6D-H6D1	0.91	2.989	160.35	3.858	S2C [x, -y-1/2, z+1/2]
N6D-H6D2	0.91	2.2	155.33	3.051	O2D [x, -y-1/2, z+1/2]
N6D-H6D2	0.91	2.93	129.83	3.582	S2D [x, -y-1/2, z+1/2]
O1M-H1M	0.83	2.385	134.8	3.028	N6A [-x+2, -y-1, -z]
O2M-H2M	0.83	1.967	158.06	2.755	O2A [-x+2, -y-1, -z]
13					
N6A-H6AA	0.91	2.197	122.87	2.798	O1A [-x+1, -y, -z]
N6A-H6AA	0.91	2.325	143.27	3.103	O1A [x, y-1, z]
N6A-H6BA	0.91	2.094	156.16	2.95	O2A [-x+1, y-1/2, -z-1/2]
16					
N6A-H6AA	0.92	2.033	165.28	2.932	O2B [x+1, y, z]
N6A-H6BA	0.92	2.078	138.65	2.834	O1B

List of all hydrogen bonds observed in crystal structures with H.A < r(A) + 2.000 Angstroms and <DHA > 110 deg.

N6A-H6BA	0.92	2.936	111.36	3.381	S2B
N6B-H6AB	0.92	2.213	119.69	2.786	O1A
N6B-H6AB	0.92	2.83	116.7	3.346	S2A
N6B-H6BB	0.92	2.075	163.78	2.969	O2A [x-1, y, z]