Table S1 Fractional Atomic Coordinates, Isotropic Thermal Parameters (${\rm \AA}^2$) for

Atom	Х	У	Z	U(iso)
Ni1	0.5000	0.0000	0.5000	0.00732(18)
B1	0.5859(3)	0.0161(5)	0.2069(4)	0.0071(8)
B2	0.3537(4)	0.2945(5)	0.4391(5)	0.0072(8)
B3	0.2191(4)	0.0367(4)	0.3569(5)	0.0099(9)
B4	0.8524(4)	0.4018(5)	0.4003(5)	0.0161(10)
B5	0.4794(3)	0.2504(5)	0.2463(5)	0.0083(9)
B6	0.9718(4)	0.0997(5)	0.7080(5)	0.0148(9)
O1	0.3179(2)	-0.0374(3)	0.4690(3)	0.0123(6)
O2	0.2248(2)	0.0029(3)	0.1928(3)	0.0121(5)
O3	0.5829(2)	0.1735(3)	0.2212(3)	0.0084(5)
O4	0.8946(2)	0.0034(3)	0.6097(3)	0.0108(5)
05	0.4499(2)	0.2118(3)	0.3970(3)	0.0066(5)
O6	0.2363(2)	0.2109(3)	0.3802(3)	0.0089(5)
07	0.6612(2)	-0.0476(3)	0.1221(3)	0.0093(5)
08	0.3706(2)	0.1995(3)	0.1148(3)	0.0093(6)
09	0.5119(2)	-0.0793(3)	0.2735(3)	0.0074(5)
O10	1.0773(3)	0.1421(4)	0.6734(3)	0.0199(7)
O11	0.9506(3)	0.1518(3)	0.8499(3)	0.0229(7)
O12	0.8348(4)	0.3518(5)	0.5416(4)	0.0329(10)
H1	0.184(4)	0.264(6)	0.316(6)	0.034(15)
H2	1.083(5)	0.107(6)	0.597(6)	0.035(16)
H3	0.805(5)	0.389(7)	0.568(7)	0.03(2)
H4	0.323(5)	0.141(6)	0.132(6)	0.034(16)
Н5	0.289(5)	-0.126(7)	0.480(6)	0.053(18)

NiB₁₂O₁₄(OH)₁₀

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

Anisotropic displacement parameters (A) for Nib ₁₂ O ₁₄ (OH) ₁₀						
	U11	U22	U33	U23	U13	U12
Ni1	0.0082(3)	0.0070(3)	0.0072(3)	0.0004(3)	0.0025(2)	0.0011(3)
B1	0.0066(17)	0.010(2)	0.0043(16)	0.0001(17)	0.0006(14)	-0.0004(17)
B2	0.009(2)	0.0057(18)	0.0069(18)	-0.0007(15)	0.0027(15)	0.0006(15)
B3	0.011(2)	0.009(2)	0.0096(19)	0.0004(15)	0.0022(16)	-0.0020(15)
B4	0.017(2)	0.016(2)	0.015(2)	0.0032(18)	0.0042(19)	0.0065(18)
B5	0.009(3)	0.0078(18)	0.0079(18)	-0.0008(15)	0.0017(18)	-0.0012(17)
B6	0.011(2)	0.018(2)	0.014(2)	-0.0005(18)	0.0025(17)	-0.0057(17)
01	0.0099(14)	0.0112(15)	0.0151(14)	0.0023(10)	0.0009(11)	-0.0017(10)
02	0.0119(12)	0.0148(12)	0.0108(12)	-0.0012(12)	0.0052(10)	-0.0033(12)
03	0.0075(13)	0.0068(12)	0.0121(13)	0.0005(10)	0.0045(10)	0.0007(10)
O4	0.0085(12)	0.0145(12)	0.0104(11)	-0.0019(12)	0.0040(9)	-0.0034(12)
05	0.0081(13)	0.0079(12)	0.0041(11)	0.0001(10)	0.0024(10)	0.0006(10)
06	0.0070(13)	0.0096(12)	0.0089(13)	0.0015(11)	-0.0010(10)	-0.0002(10)
O7	0.0103(13)	0.0074(12)	0.0118(12)	-0.0019(10)	0.0059(10)	-0.0013(9)
08	0.0092(13)	0.0126(13)	0.0069(13)	0.0011(10)	0.0032(10)	-0.0040(11)
09	0.0079(13)	0.0052(12)	0.0096(12)	-0.0012(10)	0.0033(10)	0.0000(10)
O10	0.0154(16)	0.0316(17)	0.0142(15)	-0.0083(14)	0.0063(12)	-0.0126(13)
011	0.0253(17)	0.0297(17)	0.0160(14)	-0.0095(13)	0.0097(13)	-0.0191(13)
012	0.046(2)	0.035(2)	0.0246(19)	0.0160(16)	0.0233(18)	0.0290(19)

Table S2Anisotropic displacement parameters (\mathring{A}^2) for NiB12O14(OH)10

Ni1-O5	2.044(2)	O3-B1-O7	118.6(3)
Ni1-O1	2.076(3)	O3-B1-O9	121.0(3)
Ni1-09	2.104(2)	O7-B1-O9	120.4(3)
B1-O3	1.353(5)	O5-B2-O7	113.9(3)
B1-O7	1.366(5)	O5-B2-O8	110.1(3)
B1-O9	1.392(5)	O7-B2-O8	108.6(3)
B2-O5	1.426(5)	O5-B2-O6	111.4(3)
B2-O7	1.447(5)	O7-B2-O6	107.0(3)
B2-O8	1.488(5)	O8-B2-O6	105.4(3)
B2-O6	1.513(5)	O4-B3-O2	112.5(3)
B3-O4	1.441(5)	O4-B3-O1	111.7(3)
B3-O2	1.462(5)	O2-B3-O1	111.2(3)
B3-O1	1.464(5)	O4-B3-O6	107.8(3)
B3-O6	1.510(4)	O2-B3-O6	107.0(3)
B4-O12	1.350(6)	O1-B3-O6	106.2(3)
B4-O2	1.366(5)	O12-B4-O2	121.7(4)
B4-O11	1.375(5)	O12-B4-O11	118.5(4)
B5-O3	1.417(4)	O2-B4-O11	119.8(4)
B5-O5	1.454(5)	O3-B5-O5	113.6(3)
B5-O9	1.472(5)	O3-B5-O9	111.1(3)
B5-O8	1.556(5)	O5-B5-O9	111.4(3)
B6-O10	1.361(5)	O3-B5-O8	109.0(3)
B6-O4	1.362(5)	O5-B5-O8	106.4(3)
B6-O11	1.377(5)	O9-B5-O8	104.8(3)
		O10-B6-O4	121.0(4)
		O10-B6-O11	116.8(4)
		O4-B6-O11	122.1(4)

Table S3 Selected Bond Lengths (Å) and Angles (°) for $NiB_{12}O_{14}(OH)_{10}$

Figure S1. Powder X-ray diffraction pattern of NiB₁₂O₁₄(OH)₁₀.

Figure S2. IR spectrum of $NiB_{12}O_{14}(OH)_{10}$. The bands at 3342 and 3542 cm⁻¹ correspond to the hydroxyl groups in the structure; the bands at 1430 cm⁻¹, 1382 cm⁻¹ and 1286 cm⁻¹ belong to the B-O antisymmetric stretch in [BO₃]; the bands at 1186 cm⁻¹, 1093 cm⁻¹ and 1051 cm⁻¹ belong to the B-O antisymmetric stretch of [BO₄].

Figure S3. TGA measurement exhibits a total weight-loss of about 16.8 wt% below 800° C, which originates from the dehydration of the hydroxyl groups in NiB₁₂O₁₄(OH)₁₀. The content of protons in the structure determined by the weight-loss value is consistent with the structural calculation result.