Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2006

Synthesis of 2

 $[Nb(\eta^5-C_5H_4SiMe_3)_2(CNXylyl)(PHPh_2)]Cl$ (1) (0.62 g, 0.87 mmol) in toluene (30 mL) was treated with 0.5 M aqueous NaOH (1.72 mL, 10% excess). The mixture was vigorously stirred. Within 4 h the precipitate had dissolved and the organic phase turned dark brown. The toluene solution was filtered and evaporated to dryness. Complex **2** was obtained as a yellow-brown oily material.

(2) Yield = 80%. IR (Nujol): v (cm⁻¹) 1990 (C=N). ¹H NMR (500 MHz, C₆D₆): δ 0.08 (s, 18 H, Si*Me*₃), 2.05 (s, 6 H, C*H*₃, CNXylyl), 4.58, 4.86, 4.98, 5.1 (m, 2 H each complex signal, C₅*H*₄SiMe₃), 6.95, 6.77, 6.91, 7.59 (m, C₆*H*₅). ¹³C{H} NMR (125 MHz, C₆D₆): δ 0.5 (Si*Me*₃), 97.3 (*C*¹, *C*₅H₄SiMe₃), 93.2, 97.5, 100.9, 103.4 (*C*²⁻⁵, exact assignment not possible, *C*₅H₄SiMe₃), 124.8, 126.2, 134.0 (*C*₆H₅), 133.0 (d, ²J_{C-P} = 15.70 Hz, *C*₆H₅), 152.3 (d, ¹J_{C-P} = 30.00 Hz, *C*₆H₅), 217.2 (CNXylyl). ³¹P^{{1}H³</sup> NMR (202 MHz, C₆D₆): δ -0.3 (*P*Ph₂). Anal. Calcd for C₃₇H₄₅NNbPSi₂: C, 62.08; H, 6.34; N, 1.96. Found: C, 61.85; H, 6.78; N, 2.15.

Syntheses of 3 and 4

[Nb(η^5 -C₅H₄SiMe₃)₂(CNXylyl)(PPh₂)] (**2**) (0.60 g, 0.75 mmol) in thf (30 mL) was treated with methyl propiolate (0.07 g, $\rho = 0.94$ gL⁻¹, 0.75 mmol) at 0°C (ice bath) with vigorous stirring for 10 min. The thf solution was filtered and the solvent evaporated to dryness. Complex **3** was obtained as a deep-red solid after washing with hexane (5 mL) at 0 °C. Complex **4** was prepared using a similar method to complex **3** but using methyl butynoate.

(3) Yield = 85%. IR (Nujol): v (cm⁻¹) 1718 (COO), 1630 (C=N), 1583 (C=C). ¹H NMR (500 MHz, C₆D₆): δ 0.22 (s, 18 H, Si*Me*₃), 2.32 (s, 6 H, C*H*₃, CNXylyl), 3.07 (s, 3H, C=CCO₂C*H*₃), 4.42 (m, 2 H complex signal, C₅*H*₄SiMe₃), 4.74 (m, 4 H complex signal, C₅*H*₄SiMe₃), 5.38 (m, 2 H complex signal, C₅*H*₄SiMe₃), 6.91 (m, 9H, *Ph*), 7.52 (t, 4 H, ³J_{HH} = 8.06 Hz, P*Ph*₂); 7.62 (d, 1 H, ²J_{HP} = 2.44 Hz, *H*C=C). ¹³C {H} NMR (125 MHz, C₆D₆): δ 0.4 (Si*Me*₃), 20.0 (*C*H₃, CNXylyl), 51.2 (C=CCO₂CH₃), 98.3 (C¹), 87.1, 95.5, 98.2, 106.5 (C²⁻⁵, exact assignment not possible, C₅H₄SiMe₃), 121.4–129.3 (C₆H₅), 131.5 (d, *Cortho* C₆H₅, ²J_{CP} = 9.95 Hz), 153.3 (*Cortho* CNXylyl), 141.0 (d, HC=C, ¹J_{CP} = 28.73 Hz), 167.9 (d, C=CCO₂CH₃, ²J_{CP} = 28.36 Hz), 170.3 (d, C=CCO₂CH₃, ³J_{CP} = 23.57 Hz), 220.0 (*C*=N). ³¹P {¹H} NMR (202 MHz, C₆D₆): δ 84.1 (*P*Ph₂). Anal. Calcd for C₄₁H₄₉NNbO₂PSi₂: C, 64.13; H, 6.43; N, 1.82. Found: C, 64.00; H, 6.43; N, 1.85.

⁽⁴⁾ Yield = 85%. IR (Nujol): v (cm⁻¹) 1718 (COO), 1617 (C=N), 1588 (C=C). ¹H NMR (500 MHz, C₆D₆): δ 0.15 (s, 18 H, Si*Me*₃), 1.91 (s, 3 H, C*H*₃C=CCO₂CH₃), 2.33 (s, 6 H, C*H*₃, CNXylyl), 3.02 (s, 3H, C=CCO₂C*H*₃), 4.59, 4.70, 4.79, 5.33 (m, 2 H each complex signal, C₅*H*₄SiMe₃), 6.97 (m, 9H, *Ph*), 7.58 (t, 4 H, ³J_{HH} = 7.68 Hz, P*Ph*₂), 7.62 (d, 1 H, ²J_{HP} = 2.44 Hz, *H*C=C). ¹³C {H} NMR (125 MHz, C₆D₆): δ 0.4 (Si*Me*₃), 200 (CH₃, CNXylyl), 30.0 (s, 3 H, CH₃C=CCO₂CH₃), 51.27 (C=CCO₂CH₃), 98.4 (C¹), 87.0, 95.6, 98.3, 106.5 (C²⁻⁵, exact assignment not possible, *C*₅H₄SiMe₃), 121.5–128.4 (*C*₆H₅), 138.1 (d, *Cortho* C₆H₅, ²J_{CP} = 33.84 Hz), 153.3 (*Cortho* CNXylyl), 141.1 (d, C*H*₃C=C, ¹J_{CP} = 29.41 Hz), 167.9 (d, C=CCO₂CH₃, ²J_{CP} = 26.19 Hz), 170.3 (d, C=CCO₂CH₃, ³J_{CP} = 23.77 Hz), 219.9 (C=N). ³¹P{¹H} NMR (202 MHz, C₆D₆): δ 101.1 (*P*Ph₂)). Anal. Calcd for C₄₂H₅₁NNbO₂PSi₂: C, 64.51; H, 6.57; N, 1.79. Found: C, 64.27; H, 6.24; N, 1.94.