Electronic Supplementary Information (ESI) for Dalton Transaction

# Thermodynamic, kinetic and solid-state study of divalent metal complexes of 1,4,8,11-tetraazacyclotetradecane (cyclam) bearing two *trans* (1,8-) methylphosphonic acid pendant arms

# Ivona Svobodová,<sup>a</sup> Přemysl Lubal,<sup>\*a</sup> Jan Plutnar,<sup>b</sup> Jana Havlíčková,<sup>b</sup> Jan Kotek,<sup>b</sup> Petr Hermann,<sup>\*b</sup> and Ivan Lukeš<sup>b</sup>

<sup>a</sup> Department of Analytical Chemistry, Masarykova univerzita (Masaryk University), Kotlářská 2, Brno, 611 37, Czech Republic. Tel: +420-54949-5637, Fax: +420-54949-2494, E-mail: <u>lubal@chemi.muni.cz</u>
 <sup>b</sup> Department of Inorganic Chemistry, Universita Karlova (Charles University), Hlavova 2030, Prague 2, 128 40, Czech Republic. Tel: +420-22195-1263, Fax: +420-22195-1253, E-mail: <u>petrh@natur.cuni.cz</u>

Figure S1 Ligand and selected metal-ligand (M:L=1:1) titration curves.

**Figure S2** Distribution diagrams of  $M^{2+}-1$ ,8-H<sub>4</sub>te2p systems ( $c_M = c_L = 0.004 \text{ mol dm}^{-3}$ ); M = Mg, Ca and Mn.

Figure S3 Crystal packing in the structure of *trans*-O,O-[Zn(H<sub>2</sub>L)] complex.

Figure S4 The crystal packing in the structure of  $[{(H_2O)_5Mn}_2(\mu-H_2L)](H_2L)\cdot 21H_2O$ .

**Figure S5** Disorder of the  $H_2L^{2-}$  anion found in the structure of  $[{(H_2O)_5Mn}_2(\mu-H_2L)](H_2L)\cdot 21H_2O$ .

Figure S6 Speciation diagram of 1,8-H<sub>4</sub>te2p.

**Figure S7** Examples of dependence of experimental  ${}^{f}k_{obs}$  constant on  $[Zn^{2+}]$ .

Figure S8 Examples of logarithmic analysis of kinetic experimental data for complexation of  $Zn^{2+}$  by 1,8-H<sub>4</sub>te2p.

**Figure S9** Examples of dependence of experimental  ${}^{t}k_{obs}$  constant on [Cd<sup>2+</sup>].

**Figure S10** Examples of logarithmic analysis of kinetic experimental data for complexation of  $Cd^{2+}$  by 1,8-H<sub>4</sub>te2p. **Figure S11** Partial speciation in  $Cu^{2+}$ – $OH^-$ ,  $Zn^{2+}$ – $OH^-$  and  $Cd^{2+}$ – $OH^-$  systems ( $c_M = 0.002 \text{ mol } dm^{-3}$ , I = 0.1 M). **Figure S12** Molecular structure of 1,8-H<sub>4</sub>te2p in the solid state.

**Table S1** Example of evaluation of the formation kinetics data for the  $Zn^{2+}-1,8-H_4$ te2p system by logarithmic analysis

**Table S2** Example of evaluation of the formation kinetics data for the  $Cd^{2+}-1,8-H_4te2p$  system by logarithmic analysis

**Table S3** Summary of the second-order rate constants ( $k_2$ ) for complexation in the Zn<sup>2+</sup>-1,8-H<sub>4</sub>te2p and Cd<sup>2+</sup>-1,8-H<sub>4</sub>te2p systems.

**Table S4** Example of experimental kinetic data for dissociation of the  $[Zn(L)]^{2-}$  complex with Cu<sup>2+</sup> ion as a ligand scavenger.

**Table S5** Summary of the pseudo-first-order rate constants  $({}^{d}k_{obs})$  for the dissociation of the  $[Zn(L)]^{2-}$  and  $[Cd(L)]^{2-}$  complexes.

## Thermodynamic stability of metal complexes



Figure S1 Ligand and selected metal-ligand (M:L=1:1) titration curves.

Figure S2 Distribution diagrams of  $M^{2+}-1,8-H_4$ te2p systems ( $c_M = c_L = 0.004 \text{ mol dm}^{-3}$ ); M = Mg (A), Ca (B) and Mn (C).



#### X-ray crystal structures

Figure S3 Crystal packing in the structure of *trans*-O,O-[Zn(H<sub>2</sub>L)] complex. The view down to *x* axis.
Hydrogen atoms attached to carbon atoms are omitted for clarity. Hydrogen bonds are dashed. C, N, O, P and Zn



Figure S4 The crystal packing in the structure of [{(H<sub>2</sub>O)<sub>5</sub>Mn}<sub>2</sub>(μ-H<sub>2</sub>L)](H<sub>2</sub>L)·21H<sub>2</sub>O. The view down to *x*-axis. Uncoordinated water molecules and hydrogen atoms attached to carbon atoms are omitted for clarity.C, N, O, P and Mn



**Figure S5** Disorder of the H<sub>2</sub>L<sup>2-</sup> anion found in the structure of  $[{(H_2O)_5Mn}_2(\mu-H_2L)](H_2L)\cdot 21H_2O.$  (**A**) The most abundant arrangement; (**B**) The less abundant arrangement. H,  $\overline{C}$ ,  $\overline{N}$ ,  $\overline{O}$ , P



## **Formation kinetics**

Figure S6 Speciation diagram of 1,8-H<sub>4</sub>te2p (reproduced from ref.<sup>1</sup>)



**Figure S7** Example of dependence of experimental  ${}^{f}k_{obs}$  constant on  $[Zn^{2+}]$ . Other experimental conditions are given in the text



Figure S8 Examples of logarithmic analysis of kinetic experimental data for complexation of  $Zn^{2+}$  by 1,8-H<sub>4</sub>te2p.



**Table S1** Example of evaluation of the formation kinetics data for the  $Zn^{2+}$ -1,8-H4te2p system by<br/>logarithmic analysis.

| рН  | Logarithmic analysis<br><i>n</i> |
|-----|----------------------------------|
| 3.7 | $0.98 \pm 0.06$                  |
| 3.9 | $0.80 \pm 0.06$                  |
| 4.1 | $0.91 \pm 0.07$                  |
| 6.0 | $1.18 \pm 0.06$                  |



**Figure S9** Examples of dependence of experimental  ${}^{f}k_{obs}$  constant on [Cd<sup>2+</sup>].

**Figure S10** Examples of logarithmic analysis of kinetic experimental data for complexation of Cd<sup>2+</sup> by 1,8-H<sub>4</sub>te2p.



**Table S2** Example of evaluation of the formation kinetics data for the Cd<sup>2+</sup>–1,8-H<sub>4</sub>te2p system by logarithmic analysis

| pH                       | Logarithmic analysis                                                                            |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------|--|--|
|                          | п                                                                                               |  |  |
| 4.8<br>5.0<br>6.5<br>7.0 | $\begin{array}{c} 1.17 \pm 0.07 \\ 0.94 \pm 0.05 \\ 1.10 \pm 0.08 \\ 0.90 \pm 0.04 \end{array}$ |  |  |

|     | Zn <sup>2+</sup>                                    |     | Cd <sup>2+</sup>                                      |
|-----|-----------------------------------------------------|-----|-------------------------------------------------------|
| pH  | ${}^{\mathrm{f}}k_2,\mathrm{M}^{-1}\mathrm{s}^{-1}$ | pН  | ${}^{\mathrm{f}}k_{2},\mathrm{M}^{-1}\mathrm{s}^{-1}$ |
| 3.7 | 0.185(6)                                            | 4.6 | 1.5 <sub>6</sub> (2 <sub>7</sub> )                    |
| 3.9 | 0.321(12)                                           | 4.8 | 2.64(22)                                              |
| 4.1 | 0.524(19)                                           | 5.0 | 3.7 <sub>0</sub> (1 <sub>3</sub> )                    |
| 4.5 | 0.883(80)                                           | 5.2 | $4.1_0(1_0)$                                          |
| 4.7 | 1.42 <sub>3</sub> (7 <sub>9</sub> )                 | 5.4 | 7.9(9)                                                |
| 5.2 | 5.8(9)                                              | 5.6 | 13.2(5)                                               |
| 6.0 | 211(7)                                              | 5.9 | 14.5(2)                                               |
| 6.3 | 1851(119)                                           | 6.1 | 25(1)                                                 |
| 6.5 | 1650(97)                                            | 6.3 | 41(1)                                                 |
| 6.7 | 3487(170)                                           | 6.5 | 44(2)                                                 |
| 6.8 | 3165(167)                                           | 6.8 | 112(6)                                                |
|     |                                                     | 7.0 | 83(2)                                                 |

**Table S3** Summary of the second-order rate constants ( ${}^{f}k_{2}$ ) for complexation in the Zn<sup>2+</sup>-1,8-H<sub>4</sub>te2p and Cd<sup>2+</sup>-1,8-H<sub>4</sub>te2p systems. The standard deviation of the rate constants corresponds with the last digit.

**Figure S11** Partial speciation in Cu<sup>2+</sup>–OH<sup>-</sup>, Zn<sup>2+</sup>–OH<sup>-</sup> and Cd<sup>2+</sup>–OH<sup>-</sup> systems ( $c_{\rm M} = 0.002 \text{ mol dm}^{-3}$ , I = 0.1 M; constructed with data from refs.<sup>2,3</sup>). The metal hydroxides are given as not precipitating species.



**Figure S12** Molecular structure of 1,8-H<sub>4</sub>te2p in the solid state.<sup>1</sup>



#### **Dissociation kinetics**

|      | $^{d}k_{obs} \times 10^{3},  \mathrm{s}^{-1}$       |         |         |                                                             |
|------|-----------------------------------------------------|---------|---------|-------------------------------------------------------------|
|      | $c(\mathrm{Cu}^{2+}), \mathrm{mol}\mathrm{dm}^{-3}$ |         |         |                                                             |
| pH   | 0.001                                               | 0.002   | 0.003   | average value ${}^{d}k_{obs} \times 10^3$ , s <sup>-1</sup> |
| 3.71 | 5.0(5)                                              | 5.1(5)  | 4.9(5)  | 5.0(1)                                                      |
| 4.50 | 1.56(7)                                             | 1.46(6) | 1.59(6) | 1.54(7)                                                     |
| 4.71 | 1.11(5)                                             | 1.14(4) | 1.13(4) | 1.13(1)                                                     |

**Table S4** Example of experimental kinetic data for dissociation of the  $[Zn(L)]^{2-}$  complex with  $Cu^{2+}$  ion asa ligand scavenger. The standard deviation of the rate constants corresponds with the last digit.

**Table S5** Summary of the pseudofirst-order rate constants  $({}^{d}k_{obs})$  for the dissociation of the  $[Zn(L)]^{2-}$  and  $[Cd(L)]^{2-}$  complexes. The standard deviation of the rate constants corresponds with the last digit.

|      | Zn <sup>2+</sup>                                    |         | $\mathrm{Cd}^{2+}$ |                                                  |
|------|-----------------------------------------------------|---------|--------------------|--------------------------------------------------|
|      | $^{\rm d}k_{\rm obs} \times 10^3$ , s <sup>-1</sup> |         |                    |                                                  |
| рН   | Cu <sup>2+</sup>                                    | PAR     | рН                 | $^{\rm d}k_{\rm obs} \times 10^3,  {\rm s}^{-1}$ |
| 3.71 | 5.0(1)                                              | 5.5(5)  | 4.50               | 177(3)                                           |
| 3.91 | 4.3(5)                                              | 4.9(5)  | 4.73               | 41(3)                                            |
| 4.12 | 3.1(4)                                              | 4.3(2)  | 5.15               | 10.8(1)                                          |
| 4.32 | 2.1(2)                                              | 3.0(2)  | 5.50               | 2.49(3)                                          |
| 4.50 | 1.54(7)                                             | 2.2(1)  | 5.83               | 1.273(8)                                         |
| 4.71 | 1.13(1)                                             | 1.72(7) | 6.11               | 0.664(9)                                         |
| 4.80 | 0.86(3)                                             |         |                    |                                                  |

#### **References:**

- <sup>1</sup> J. Kotek, P. Vojtíšek, I. Císařová, P. Hermann, P. Jurečka, J. Rohovec and I. Lukeš, *Collect. Czech. Chem. Commun.*, 2000, **65**, 1289.
- <sup>2</sup> (a) A. E. Martell and R. M. Smith, *Critical Stability Constants*. Plenum Press, New York, 1974–1989,
- Vols. 1-6; (b) *NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes)*, Version 7.0, 2003.
- <sup>3</sup> C. F. Baes, Jr. and R. E. Mesmer, *The Hydrolysis of Cations*, Wiley, New York, 1976.