Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2007

Reductions of oxo species by aquatitanium(II) as catalyzed by titanium(IV)

Basab Bijayi Dhar and Edwin S. Gould

SUPPLEMENTARY MATERIALS

Tables S-1 to S-6. Detailed kinetic data for redox reactions.

Fig. 1. Reduction of 1,4-benzoquinone by Ti(II) as catalyzed by Ti(IV); kinetic

dependence on [Ti(IV)].

Fig. 2. Absorbance of Ti(II)-Ti(IV) mixtures.

kinetic data^a

10 ⁴ [Ti ^{II}]/ M	10 ³ [Ti ^{IV}]/ M	[H ⁺]/ M	$10^{3}k_{\rm obs}/{\rm s}^{-1}^{b}$
1.00	1.00	0.50	3.0 (3.1)
2.0	1.00	0.50	6.2 (6.17)
4.0	1.00	0.50	13.1 (12.3)
6.0	1.00	0.50	18.2(18.5)
8.0	1.00	0.50	24(25)
10.0	1.00	0.50	31(31)
10.0	1.00	0.50	37(37)
10.0	1.60	0.50	42(42)
10.0	2.0	0.50	48(48)
10.0	4.0	0.50	63(64)
10.0	8.0	0.50	78(83)
10.0	10.0	0.25	31(31)
10.0	10.0	0.100	29(31)

Table S1 - Titanium(II) reduction of 1,4-benzoquinone as catalyzed by titanium(IV);

^aReactions at 22.0 ± 0.5 °C, $\mu = 0.50$ M (HClO₄/NaClO₄/CF₃SO₃H) $\lambda = 246-260$ nm; [Bzqn] = 1.0×10^{-5} M. ^bPseudo-first order rate constants; parenthetical values were calculated using rate law and parameters in Table 2. Table S2 – Titanium(II) reduction of 2,5-dichloro-3,6-dihydroxy-benzoquinone as

[Ti ^{II}]/ mM	[Ti ^{IV}]/ mM	$[H^+]/M$	$10k_{\rm obs}/{\rm s}^{-1}^b$
1.00	1.00	0.50	2.6(2.6)
1.00	3.0	0.50	5.0(5.0)
1.00	5.0	0.50	6.1(6.2)
1.00	8.0	0.50	7.1(7.2)
1.00	10.0	0.50	7.6(7.5)
2.0	8.0	0.50	15.6(14.3)
4.0	8.0	0.50	30(29)
6.0	8.0	0.50	42(43)
8.0	8.0	0.50	53(57)
2.0	2.0	0.50	8.2(8.2)
2.0	2.0	0.25	8.8(8.7)
2.0	2.0	0.100	10.7(10.9)

catalyzed by titanium(IV); kinetic data^a

^aReactions at 22.0 \pm 0.5 ^oC; μ = 0.50 M (HClO₄/NaClO₄/CF₃SO₃H) λ = 330 nm;

 $[oxidant] = 5.0 \times 10^{-5}$ M. ^bPseudo-first order rate constants; parenthetical values were calculated using rate law and parameters in Table 2.

titanium(IV); kinetic data^a

[Ti ^{II}]/ mM	[Ti ^{IV}]/ mM	$[H^+]/M$	$10k_{\rm obs}/{\rm s}^{-1}{}^{b}$
1.00	5.0	0.50	3.6(3.6)
2.0	5.0	0.50	7.3(7.2)
4.0	5.0	0.50	14.3(14.5)
5.0	5.0	0.50	18.3(18.1)
2.0	2.0	0.50	4.6(4.6)
2.0	3.0	0.50	5.8(5.8)
2.0	7.0	0.50	8.2(8.1)
2.0	10.0	0.50	9.0(9.0)
2.0	2.0	0.25	6.0(5.6)
2.0	2.0	0.100	8.3(8.4)

Table S3 – Titanium(II) reduction of 2,5-dihydroxy-1,4-benzoquinone, as catalyzed by

^aReactions at 22.0 \pm 0.5 °C, μ = 0.50 M (HClO₄/NaClO₄/CF₃SO₃H), λ = 310 nm, [oxidant] = 1.0 × 10⁻⁵ M. ^bPseudo-first order rate constants; parenthetical values were calculated using rate law and parameters in Table 2.

Table S4 –	Titanium(II)	reduction of	tetrahyd	roxy-1,4-	benzoquinone,	as cataly	zed b	yу
------------	--------------	--------------	----------	-----------	---------------	-----------	-------	----

[Ti ^{II}]/ mM	[Ti ^{II}]/ mM	[H ⁺]/ M	$10k_{\rm obs}/{\rm s}^{-1}^{b}$
1.00	5.0	0.50	4.7(4.6)
2.0	5.0	0.50	8.5(9.1)
4.0	5.0	0.50	18.6(18.3)
5.0	5.0	0.50	22(23)
4.0	4.0	0.50	17.2(16.4)
4.0	6.0	0.50	20(20)
4.0	8.0	0.50	22(22)
4.0	10.0	0.50	24(24)
2.0	2.0	0.50	4.2(4.6)
2.0	2.0	0.25	4.0(4.6)
2.0	2.0	0.100	4.2(4.6)

titanium(IV); kinetic data^a

^aReactions at 22.0 \pm 0.5 °C, μ = 0.50 M (HClO₄/NaClO₄/CF₃SO₃H), λ = 310 nm, [oxidant] = 1.0 × 10⁻⁵ M. ^bPseudo-first order rate constants; parenthetical values were calculated using rate law and parameters in Table 2.

10 ² [Ti ^{II}]/ M	10 ² [Ti ^{IV}]/ M	$[H^+]/M$	$k_{\rm obs}/{\rm s}^{-1}{}^b$
1.00	1.00	0.50	32(30)
1.00	1.50	0.50	46(45)
1.00	2.0	0.50	60(59)
1.00	2.5	0.50	71(74)
1.50	2.5	0.50	95(112)
1.00	1.00	0.30	30(30)
1.00	1.00	0.100	30(30)

Table S5 – Titanium(II) reduction of nitrosodisulfonate as catalyzed by titanium(IV);

^aReactions at 22.0 ± 0.5 °C, μ = 0.50 M (LiCl/CF₃SO₃H/HCl), λ = 300 nm; [NDS] = 2.0 × 10⁻³ M. ^bPseudo-first order rate constants; parenthetical values were calculated using the rate law and parameters in Table 2.

kinetic data^a

$[Ti^{II}]/mM$	[Ti ^{IV}]/ mM	[F ⁻]/ mM	[Cl ⁻]/ mM	[H ⁺]/ M	$k_{\rm obs}/{\rm s}^{-1}^{b}$
1.00	1.00	0	0	0.50	2.4(2.8)
2.0	2.0	0	0	0.50	8.6(8.9)
3.5	3.5	0	0	0.50	22(21)
5.0	5.0	0	0	0.50	38(35)
7.0	7.0	0	0	0.50	55(54)
10.0	10.0	0	0	0.50	90(84)
1.00	2.0	0	0	0.50	4.3(4.5)
1.00	5.0	0	0	0.50	7.2(6.9)
1.00	8.0	0	0	0.50	8.6(8.0)
1.00	1.00	0	0	0.50	9.2(8.5)
1.00	1.00	1.00	0	0.50	3.9(4.1)
1.00	1.00	2.0	0	0.50	5.6(5.4)
1.00	1.00	5.0	0	0.50	9.2(9.3)
1.00	1.00	7.0	0	0.50	12.2(13.1)
1.00	1.00	10.0	0	0.50	17.2(16.0)
1.00	1.00	0	1.00	0.50	2.9(3.0)
1.00	1.00	0	5.0	0.50	4.0(4.0)
1.00	1.00	0	10.0	0.50	5.5(5.5)
1.00	1.00	0	0	0.10	2.5(2.8)

Table S6 – Titanium(II) reduction of manganese(IV) as catalyzed by titanium(IV); kinetic data^a

^aReductions of the biguanide complex, $[Mn^{IV}(bigH)_3]^{4+}$. Reactions were run at 22.0 ± 0.5 °C, $\mu = 0.50$ M, (HClO₄/NaClO₄/CF₃SO₃H), $\lambda = 430$ nm. $[Mn^{IV}] = 1.0 \times 10^{-4}$ M. ^bPseudo-first order rate constants; parenthetical values were calculated using rate laws and parameters in Table 2.

Figure captions:

Fig. 1 Plot of k_{obs} vs. [Ti(IV)] for the reduction of 1,4-benzoquinone by Ti(II). In all the sets, [Ti(II)] = 1.0 mM, [oxidant] = 0.010 mM, [H⁺] = 0.50 M, $\mu = 0.5$ M (HClO₄/CF₃SO₃H) and T = 22.0 ± 0.5 °C. Solid line was calculated using rate law and kinetic parameters in Table 2.

Fig. 2 Absorbance at 428 nm vs. [Ti(IV)] for the Ti(II) solutions. In all the sets, [Ti(II)] = 1.0 mM, $[H^+] = 0.50 \text{ M}$, $\mu = 0.5 \text{ M}$ (HClO₄/CF₃SO₃H), T = 22.0 ± 0.5 °C. Optical path length = 1.0 cm. Solid line represents calculated values using the equation:

$$\frac{\text{Abs}}{[\text{Ti}^{\text{II}}]} = \frac{\varepsilon_{\text{Ti}}^{\text{II}} + K\varepsilon_{\text{Ti}}^{\text{II, IV}}[\text{Ti}^{\text{IV}}]}{1 + K[\text{Ti}^{\text{IV}}]}$$

taking $\mathbf{\mathcal{E}}_{\text{Ti}}^{\text{II}} = 0.33 \text{ M}^{-1} \text{cm}^{-1}$, $\mathbf{\mathcal{E}}_{\text{Ti}}^{\text{II}, \text{IV}} = 19.3 \text{ M}^{-1} \text{cm}^{-1}$ and $K = 293 \text{ M}^{-1}$.

Fig. 1

Fig. 2