Crystal structure and dynamic properties of a bimetallic cyano complex Cd(C₄H₈O₂)Cu(CN)₃ with an interpenetrating 3D framework containing a 1,4-dioxane bridging ligand as a rotor

Electronic Supplementary Information (ESI)

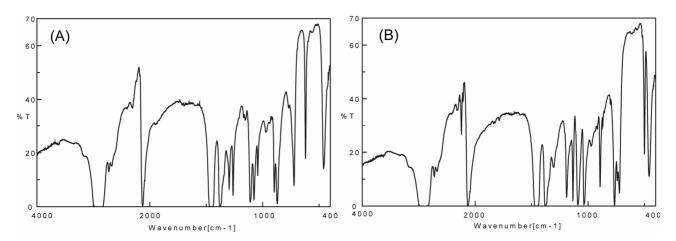
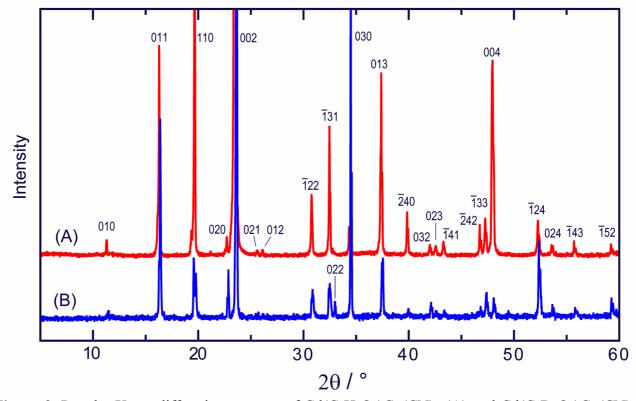
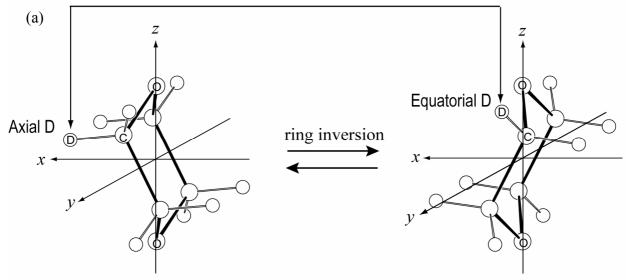
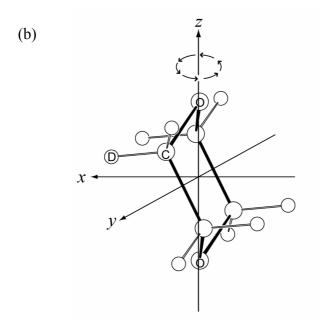




Figure 1. IR spctra of $Cd(C_4H_8O_2)Cu(CN)_3$ (A) and $Cd(C_4D_8O_2)Cu(CN)_3$ (B) measured by Nujol mull method.

Figure 2. Powder X-ray diffraction patterns of $Cd(C_4H_8O_2)Cu(CN)_3$ (A) and $Cd(C_4D_8O_2)Cu(CN)_3$ (B) measured with $Cu \ K\alpha \ radiation(\lambda = 1.5418 \ Å)$. The crystallinity of the duretared sample seemed to be inferior to that of the normal one, though the agreement between diffraction peaks of both samples was very well.


D atom moves between an axial(left) and an equatorial(right) site.

Euler angles for the D-C orientation for the axial and equatorial D in this coordinate system.

Axial D(left) $\alpha = 2.57^{\circ}$, $\beta = 96.70^{\circ}$, $\gamma = 0^{\circ}$

Equatorial D(right) $\alpha = 69.85^{\circ}$, $\beta = 56.35^{\circ}$, $\gamma = 0^{\circ}$

Figure3. Motional Model for the 1,4-dioxane Rotor which is undergoing ring inversion and rotational motion simultaneously. (a)Ring inversion of the 1,4-dioxane is described as an interchange of two mirror images. (b)Rotational motion is modeled as a successive 60° jump about the z axis. The geometrical data of the chair form 1,4-dioxane molecule were cited from ref. 13.