Molecular structures of free quinuclidine and its adducts with metal trihydrides, MH_3 (M = B, Al or Ga), studied by gas-phase electron diffraction, X-ray diffraction and quantum chemical calculations

Derek A. Wann,^{*a*} Frank Blockhuys,^{*b*} Christian Van Alsenoy,^{*b*} Heather E. Robertson,^{*a*} Hans-Jörg Himmel,^{*c*} Christina Y. Tang,^{*d*} Andrew R. Cowley,^{*d*} Anthony J. Downs^{*d*} and David W. H. Rankin*^{*a*}

Supplementary Information

Table ST Experimental parameters for the GED analyses of 1–5.							
	1		2		3		
Nozzle-to-film distance ^b	93.45	254.87	203.39 ^c	264.45	93.71	261.44	
T_{sample}	382	365	353	343	371	368	
T _{nozzle}	398	393	363	358	383	378	
Δs	0.4	0.2	0.2	0.1	0.2	0.1	
<i>S</i> _{min}	10.0	2.0	4.0	2.0	8.0	2.0	
SW1	12.0	4.0	6.0	4.0	10.0	4.0	
SW ₂	30.4	13.0	18.0	6.8	31.0	12.9	
S _{max}	35.6	15.2	21.0	8.0	36.0	14.0	
Correlation parameter	0.4376	0.4321	0.4653	0.4970	-0.2051	0.4723	
Scale factor, <i>k</i>	0.687(10)	0.739(4)	0.462(7)	0.455(8)	0.588(5)	0.591(2)	
Electron wavelength, λ	6.02	6.02	6.13	6.13	6.13	6.13	

 Table S1 Experimental parameters for the GED analyses of 1–3.^a

^{*a*} Nozzle-to-film distances are in mm, temperatures are in K, *s* values are in nm⁻¹and electron wavelengths are in pm. Values in parentheses are standard deviations of the last digits. ^{*b*} Determined by reference to scattering patterns of benzene. ^{*c*} For **2** data were collected using a medium nozzle-to-film distance rather than the short distance used for **1** and **3**. This was necessary because thermal decomposition occurred at the higher temperature required to obtain data at the shorter distance.

Figure 2 for atom numbering.								
	Atom pair	ra	$u_{\rm h1}$ (exp.)	$k_{ m h1}$	$u_{\rm h1}$ (calc.)			
u_1	C(2)–H′(2)	1.109(2)	0.086(2)	0.004	0.077			
u_2	C(2)–H(2)	1.109(2)	0.086 (tied to u_1)	0.004	0.077			
u_3	C(4)–H(4)	1.109(2)	0.086 (tied to u_1)	0.004	0.077			
u_4	C(3) - H(3)	1.109(2)	0.086 (tied to u_1)	0.004	0.077			
u_5	C(3) - H'(3)	1.109(2)	0.086 (tied to u_1)	0.004	0.077			
u_6	N(1) - C(2)	1.463(2)	0.040(2)	0.001	0.050			
$\tilde{u_7}$	C(3) - C(4)	1.547(3)	0.041 (tied to u_6)	0.002	0.052			
u_8	C(2) - C(3)	1.562(4)	0.042 (tied to u_6)	0.001	0.053			
<i>U</i> o	$H(2)\cdots H'(2)$	1.771(14)	0.123(fixed)	0.001	0.123			
u_{10}	$H(3)\cdots H'(3)$	1.777(14)	0.123(fixed)	0.001	0 123			
u_{11}	$N(1) \cdots H(2)$	2.075(12)	0 104(3)	-0.001	0 103			
u_{12}	$N(1) \cdots H'(2)$	2.072(12) 2.084(12)	0.105(tied to u_{11})	-0.001	0 104			
<i>u</i> ₁₂	$H(3) \cdots C(4)$	2.001(12) 2.169(12)	0.108 (tied to u_{11})	-0.001	0.108			
111A	$C(3) \cdots H(4)$	2.109(12) 2 188(3)	0.106 (tied to u_{11})	0.001	0.106			
u 14	$H(3)\cdots C(4)$	2.100(3) 2.181(11)	$0.100(\text{tied to } u_{11})$ 0.109(tied to $u_{11})$	_0.001	0.100			
<i>u</i> ₁₅	$\Gamma(3) = C(4)$ $\Gamma(2) \dots H(3)$	2.101(11) 2.257(10)	0.109 (fied to u_{11})	-0.001	0.109			
<i>u</i> ₁₆	C(2) = H(3) C(2) = H'(3)	2.237(10) 2.108(12)	$0.108(\text{tied to } u_{11})$	-0.001	0.108			
<i>u</i> ₁₇	U(2) = U(3)	2.190(13) 2.190(14)	$0.100(\text{tied to } u_{11})$ 0.107(tied to $u_{11})$	-0.001	0.108			
u_{18}	$\Pi(2)^{m}C(3)$ $\Pi'(2)^{m}C(2)$	2.169(14)	0.107 (lied to u_{11}) 0.106 (tight to u_{11})	0.000	0.107			
u_{19}	$\Pi(2)$ $U(3)$	2.247(11)	$0.100(\text{lied to } u_{11})$ 0.172(for d)	0.000	0.100			
u_{20}	$H(2) \cdots H(3)$	2.399(21)	0.1/3(fixed)	0.013	0.173			
u_{21}	$H'(4) \cdots H'(3)$	2.399(21)	0.1/4(fixed)	0.013	0.1/4			
u_{22}	$C(2) \cdots C(6)$	2.3/8(2)	0.068 (tied to u_{27})	-0.003	0.067			
u_{23}	$H(2)\cdots H'(7)$	2.386(21)	0.233(fixed)	0.014	0.233			
u_{24}	H(3)···H(4)	2.463(14)	0.167(fixed)	0.005	0.167			
u_{25}	$C(3)\cdots C(5)$	2.511(4)	0.073 (tied to u_{27})	-0.002	0.072			
u_{26}	$C(2)\cdots C(4)$	2.493(2)	0.064 (tied to u_{27})	-0.004	0.063			
u_{27}	$N(1) \cdots C(3)$	2.508(1)	0.064(1)	-0.004	0.064			
u_{28}	C(2)···H(6)	2.541(16)	0.162 (tied to u_{27})	-0.001	0.161			
u_{29}	H'(3)…H(4)	2.544(14)	0.167(fixed)	0.001	0.167			
u_{30}	H(3)…H′(8)	2.550(23)	0.252(fixed)	0.012	0.252			
u_{31}	$N(1) \cdots C(4)$	2.580(2)	0.065 (tied to u_{27})	-0.002	0.065			
u_{32}	C(3)…H′(8)	2.680(17)	0.172 (tied to u_{27})	-0.001	0.171			
u_{33}	C(2)…H′(7)	2.690(14)	0.162 (tied to u_{27})	-0.004	0.161			
u_{34}	C(2)…C(8)	2.835(8)	0.118(5)	-0.008	0.108			
u_{35}	C(3)…H(5)	2.824(16)	0.185 (tied to u_{34})	-0.003	0.169			
u_{36}	H'(2)…H(3)	2.947(17)	0.161(fixed)	-0.005	0.161			
u_{37}	H(2)…H'(8)	2.974(24)	0.406(fixed)	-0.005	0.406			
u_{38}	$C(2) \cdots C(5)$	2.940(6)	0.088 (tied to u_{34})	-0.009	0.081			
u_{39}	$H(2) \cdots H'(3)$	2.977(20)	0.140(fixed)	-0.011	0.140			
u_{40}	H(2)…C(8)	3.062(17)	0.277 (tied to u_{34})	-0.011	0.254			
u_{41}	C(2)…H'(8)	3.093(19)	0.270 (tied to u_{34})	-0.011	0.248			
u_{42}	$H(2) \cdots C(4)$	3.147(11)	0.168 (tied to u_{34})	-0.011	0.155			
u_{43}	N(1)…H'(3)	3.159(11)	0.163 (tied to u_{34})	-0.011	0.150			
чэ Илл	N(1)····H(3)	3.340(9)	0.126(5)	-0.014	0.119			
U15	$C(2) \cdots H(7)$	3.317(8)	0.105 (tied to u_{44})	-0.012	0.100			
чэ И46	C(2)…H'(6)	3.319(8)	0.106 (tied to u_{44})	-0.011	0.101			
	× / × /	× /	X 10					

Table S2 Interatomic distances (r_a in Å), experimental and calculated amplitudes of vibration (u_{h1} in Å) and curvilinear corrections (k_{h1} in Å) from the SARACEN refinement of **1**. See Figure 2 for atom numbering.

u_{47}	H'(2)…C(4)	3.337(8)	0.127 (tied to u_{44})	-0.014	0.121
u_{48}	C(3)…H′(5)	3.461(8)	0.108 (tied to u_{44})	-0.012	0.103
u_{49}	C(3)…H(8)	3.468(7)	0.109 (tied to u_{44})	-0.011	0.103
u_{50}	C(2)…H(4)	3.467(3)	0.106 (tied to u_{44})	-0.010	0.100
u_{51}	H'(2)…C(5)	3.461(16)	0.210 (tied to u_{44})	-0.018	0.200
u_{52}	C(2)…H(5)	3.475(15)	0.205 (tied to u_{44})	-0.017	0.195
u_{53}	H(2)…H(6)	3.566(19)	0.167(fixed)	-0.016	0.167
u_{54}	H'(2)…H'(6)	3.600(21)	0.175(fixed)	-0.011	0.175
u_{55}	N(1)…H(4)	3.683(2)	0.102 (tied to u_{44})	-0.009	0.097
u_{56}	H'(3)…H'(5)	3.717()	0.178(fixed)	-0.016	0.178
u_{57}	H(3)…H(5)	3.767(19)	0.185(fixed)	-0.012	0.185
u_{58}	H′(2)…H(5)	3.746(22)	0.338(fixed)	-0.022	0.338
u_{59}	C(2)…H(8)	3.881(8)	0.113(5)	-0.022	0.115
u_{60}	H'(2)…C(8)	3.890(7)	0.114 (tied to u_{59})	-0.022	0.115
u_{61}	C(2)…H'(5)	3.868(9)	0.113 (tied to u_{59})	-0.021	0.115
u_{62}	H(2)…C(5)	3.878(9)	0.114 (tied to u_{59})	-0.021	0.115
u_{63}	H(2)…H(4)	4.047(12)	0.185(fixed)	-0.018	0.185
u_{64}	H(2)…H(8)	4.149(18)	0.264(fixed)	-0.029	0.264
u_{65}	H'(2)…H'(8)	4.186(19)	0.261(fixed)	-0.029	0.261
u_{66}	H(2)…H'(6)	4.132(13)	0.135(fixed)	-0.017	0.135
u_{67}	H'(2)…H(4)	4.254(10)	0.150(fixed)	-0.022	0.150
u_{68}	H(3)…H'(5)	4.307(11)	0.137(fixed)	-0.018	0.137
u_{69}	H'(2)…H'(5)	4.469(15)	0.186(fixed)	-0.035	0.186
u_{70}	H(2)…H(5)	4.497(15)	0.182(fixed)	-0.035	0.182
u_{71}	H(2)…H′(5)	4.704(12)	0.190(fixed)	-0.034	0.190
u_{72}	H'(2)…H(8)	4.896(8)	0.131(fixed)	-0.040	0.131

Table S3 Least-squares correlation matrix ($\times 100$) from the GED refinement of 1.^{*a*}

	p_5	p_8	p_{11}	p_{15}	u_6	u_{34}
p_1			61			-55
p_2					76	
p_3	65	-59			-56	
p_8				-54		
p_{11}						-83

^{*a*} Only values \geq 50% are shown.

	\mathcal{X}	y	2
N(1)	0.0000	0.0000	0.0000
C(2)	0.0000	1.3802	-0.5040
H(2)	-0.9646	1.8298	-0.1760
H'(2)	0.7940	1.9389	0.0413
C(3)	0.1478	1.4471	-2.0505
H(3)	-0.5922	2.1131	-2.5493
H′(3)	1.1402	1.8542	-2.3497
C(4)	0.0000	0.0000	-2.5880
H(4)	0.0000	0.0000	-3.7016
C(5)	1.1793	-0.8516	-2.0505
H(5)	2.1262	-0.5437	-2.5493
H′(5)	1.0357	-1.9145	-2.3497
C(6)	1.1952	-0.6901	-0.5040
H(6)	2.0669	-0.0795	-0.1760
H′(6)	1.2822	-1.6571	0.0413
C(7)	-1.1952	-0.6901	-0.5040
H(7)	-1.1023	-1.7502	-0.1760
H′(7)	-2.0762	-0.2818	0.0413
C(8)	-1.3271	-0.5956	-2.0505
H(8)	-1.5339	-1.5695	-2.5493
H′(8)	-2.1759	0.0603	-2.3497

Table S4 Cartesian coordinates (in Å) for
x the GED refined structure (r_{h1}) of 1.xy

Figure	e 2 for atom numb	bering.			
	Atom pair	ra	$u_{\rm h1}$ (exp.)	$k_{\rm h1}$	$u_{\rm h1}$ (calc.)
u_9	C(8) - H(8)	1.090(4)	0.091 (tied to u_7)	0.004	0.075
u_{10}	C(8)–H′(8)	1.090(4)	0.091 (tied to u_7)	0.004	0.075
u_1	C(4) - H(4)	1.090(4)	0.091 (tied to u_7)	0.004	0.075
u_8	C(7)–H(7)	1.090(4)	0.090 (tied to u_7)	0.004	0.074
u_7	C(7) - H'(7)	1.090(4)	0.090(4)	0.004	0.074
u_{11}	B(9) - H(12)	1.218(9)	0.103 (tied to u_7)	0.005	0.085
u_{12}	N(1) - C(7)	1.489(6)	0.046(4)	0.001	0.049
u_{13}	C(8) - C(4)	1.536(6)	0.047 (tied to u_{12})	0.002	0.050
u_{14}	C(7) - C(8)	1.539(6)	0.048 (tied to u_{12})	0.001	0.050
u_2	N(1) - B(9)	1.624(9)	0.062 (tied to u_{12})	0.003	0.065
\tilde{u}_{16}	H(8)…H'(8)	1.760(26)	0.119(fixed)	0.002	0.119
u_{15}	$H'(7)\cdots H(7)$	1.768(28)	0.118(fixed)	0.002	0.118
u_{17}	$H(12) \cdots H(11)$	2.030(19)	0.132(fixed)	0.001	0.132
\mathcal{U}_{18}	$N(1)\cdots H(7)$	2.072(14)	0 078(9)	0.000	0 100
\mathcal{U}_{10}	$N(1) \cdots H'(7)$	2.072(11) 2.080(14)	0.079(tied to u_{10})	0.000	0.100
119 1104	$C(7)\cdots H'(8)$	2.000(11) 2.107(32)	0.081 (tied to u_{18})	0.000	0.103
1124 1125	$H(7) \cdots C(8)$	2.107(32) 2.125(29)	0.081 (fied to u_{18})	0.000	0.103
u25 U20	$H'(8)\cdots C(4)$	2.123(2)) 2.167(14)	0.080 (fied to u_{18})	0.000	0.103
<i>u</i> 20	$C(8) \cdots H(4)$	2.107(14) 2.172(9)	0.081 (fied to u_{18})	0.000	0.104
u21	U(8) = U(4)	2.172(9) 2.178(14)	$0.080(\text{tied to } u_{18})$	0.002	0.102
<i>u</i> ₂₂	$\Gamma(0) = C(4)$ C(7) = H(8)	2.170(14) 2.210(28)	0.082 (tied to u_{18})	0.000	0.103
<i>u</i> ₂₃	U(7) = U(8)	2.219(20)	0.081 (field to u_{18})	0.000	0.103
u_{26}	$\Pi(7)^{m}U(6)$	2.207(30)	0.080 (field to u_{18})	0.001	0.102
u_{27}	$N(1) \cdots \Pi(12)$	2.278(10)	$0.090(\text{filed to } u_{18})$	-0.001	0.110
u_{28}	H(7) $H(8)$	2.323(37)	0.165(11xed) 0.167(fixed)	0.018	0.165
u_{29}	H(7) $H(8)$	2.301(40)	0.10/(11xed) 0.220(fire d)	0.01/	0.10/
u_{30}	$H'(7) \cdots H(6)$	2.40/(38)	0.220(fixed)	0.021	0.220
u_{32}	$H'(/) \cdots H(10)$	2.414(39)	0.236(fixed)	0.038	0.236
u_{31}	$C(7) \cdots C(2)$	2.424(12)	0.092 (tied to u_{36})	-0.004	0.066
u_{33}	$H(8) \cdots H(4)$	2.458(22)	0.160(fixed)	0.008	0.160
u_{36}	$N(1) \cdots C(8)$	2.482(11)	0.084(3)	-0.00/	0.060
u_{34}	$H(7)\cdots H(11)$	2.487(38)	0.231(fixed)	0.038	0.231
u_{35}	$C(8) \cdots C(3)$	2.488(12)	0.095 (tied to u_{36})	-0.004	0.068
u_{37}	$C(7)\cdots C(4)$	2.489(16)	0.085 (tied to u_{36})	-0.006	0.061
u_{40}	$C(7)\cdots H(6)$	2.515(24)	0.225 (tied to u_{36})	0.000	0.160
u_{41}	C(7)···B(9)	2.542(10)	0.115 (tied to u_{36})	0.004	0.082
u_3	$N(1)\cdots C(4)$	2.560(11)	0.083 (tied to u_{36})	-0.002	0.059
u_{38}	$H'(8)\cdots H(4)$	2.566(21)	0.163(fixed)	0.004	0.163
u_{39}	$H'(8)\cdots H(5)$	2.566(38)	0.234(fixed)	0.017	0.234
u_{42}	H'(7)…B(9)	2.583(24)	0.212 (tied to u_{36})	0.012	0.151
u_{43}	C(8)····H′(3)	2.641(23)	0.231 (tied to u_{36})	-0.001	0.165
u_{46}	C(7)···H(11)	2.708(24)	0.256 (tied to u_{52})	0.008	0.176
u_{44}	C(7)…H'(2)	2.722(23)	0.233 (tied to u_{52})	-0.003	0.161
u_{45}	H(7)…B(9)	2.771(26)	0.233 (tied to u_{52})	0.007	0.161
u_{51}	H'(7)…H(11)	2.795(42)	0.286(fixed)	0.005	0.286
u_{54}	H(7)…H'(3)	2.813(84)	0.483(fixed)	-0.012	0.483
u_{47}	C(8)…H(5)	2.815(23)	0.239 (tied to u_{52})	-0.003	0.165

Table S5 Interatomic distances (r_a in Å), experimental and calculated amplitudes of vibration (u_{h1} in Å) and curvilinear corrections (k_{h1} in Å) from the SARACEN refinement of **2**. See Figure 2 for atom numbering.

u_{49}	C(7)…H(10)	2.817(26)	0.259 (tied to u_{52})	0.005	0.179
u_{48}	$C(7) \cdots C(3)$	2.831(30)	0.169 (tied to u_{36})	-0.012	0.121
u_{53}	H(7)…H'(8)	2.864(50)	0.208 (tied to u_{52})	-0.011	0.143
u_{52}	$C(7) \cdots C(5)$	2.928(21)	0.129(8)	-0.014	0.089
u_{50}	H'(7)…H(8)	2.932(49)	0.161(fixed)	-0.005	0.161
u_{55}	$H(7) \cdots C(3)$	2.956(59)	0.424 (tied to u_{52})	-0.017	0.293
u_{56}	C(7)…H'(3)	3.011(56)	0.408 (tied to u_{52})	-0.016	0.282
u_{58}	H(7)…C(4)	3.068(32)	0.234 (tied to u_{52})	-0.015	0.161
u_{57}	N(1)…H'(8)	3.072(25)	0.223 (tied to u_{52})	-0.015	0.154
u_{59}	H(7)…H(10)	3.268(40)	0.281(fixed)	-0.008	0.281
u_{60}	N(1)…H(8)	3.308(20)	0.124(7)	-0.018	0.123
u_{62}	C(7)····H′(6)	3.332(15)	0.099 (tied to u_{60})	-0.011	0.098
u_{63}	$C(7) \cdots H(2)$	3.332(15)	0.098 (tied to u_{60})	-0.013	0.098
u_{61}	$H'(7)\cdots C(4)$	3.347(22)	0.129 (tied to u_{60})	-0.018	0.128
u_{64}	C(8)····H'(5)	3.432(14)	0.100 (tied to u_{60})	-0.013	0.099
u_{65}	C(8)…H(3)	3.442(13)	0.100 (tied to u_{60})	-0.011	0.099
<i>u</i> ₆₇	$C(7) \cdots H(4)$	3.444(18)	0.098 (tied to u_{60})	-0.012	0.097
U68	$C(7) \cdots H(5)$	3.459(35)	0.231 (tied to u_{60})	-0.024	0.229
U66	$H'(7)\cdots C(5)$	3.462(38)	0.238 (tied to u_{60})	-0.025	0.236
U69	$C(7) \cdots H(12)$	3.542(14)	0.113 (tied to u_{60})	-0.013	0.112
<i>U</i> 70	$H(7)\cdots H(2)$	3.545(24)	0 161(fixed)	-0.017	0 161
u_{70}	$H'(7) \cdots H'(2)$	3.587(25)	0.166(fixed)	-0.010	0 166
<i>U</i> _A	$N(1)\cdots H(4)$	3.648(12)	0.092 (tied to u_{60})	-0.008	0.091
1172	$H'(8)\cdots H'(3)$	3.692(23)	0.169(fixed)	-0.016	0 169
1175	$H'(7) \cdots H(12)$	3714(25)	0.163(fixed)	-0.013	0.163
<i>U</i> 73	$H'(7)\cdots H(5)$	3752(54)	0.414(fixed)	-0.031	0 414
117A	$H(8)\cdots H(3)$	3.757(24)	0.173(fixed)	-0.011	0.173
U76	$H(7) \cdots H(12)$	3.782(28)	0.172(fixed)	-0.014	0.172
<i>U</i> 70	$H(7) \cdots C(5)$	3812(16)	0.147 (tied to u_{01})	-0.029	0.109
1100	$C(7) \cdots H'(5)$	3.824(16)	0.146 (tied to u_{81})	-0.028	0.108
1170	$C(7) \cdots H(3)$	3 869(29)	0.155 (tied to u_{81})	-0.029	0.100
1170 1177	$H'(7)\cdots C(3)$	3.871(26)	0.153 (tied to u_{81})	-0.030	0 1 1 4
<i>U</i> ₉₁	$C(8)\cdots B(9)$	3.917(11)	$0.1125(1100 to u_{01})$ 0.112(6)	-0.008	0.083
1102	$H(7) \cdots H(4)$	3 954(36)	0.192(fixed)	-0.021	0.192
1101	$H(7) \cdots H(3)$	4 052(61)	0.192(fixed)	-0.039	0.192
1105	$H'(7)\cdots H'(3)$	4 114(57)	0.29 (fixed)	-0.040	0.291
1102	$H'(7) \cdots H(2)$	4 120(23)	0.131(fixed)	-0.015	0.131
1100	$C(8) \cdots H(11)$	4 174(28)	0.194 (tied to u_5)	-0.010	0.165
115	$C(4) \cdots B(9)$	4 182(13)	0.092(7)	-0.003	0.078
1107	$C(8) \cdots H(10)$	4 196(26)	0.092(r) 0.199(tied to u_5)	-0.009	0.070
1187 1100	$H'(7) \cdots H(4)$	4.190(20) 4.252(26)	0.155 (fixed)	-0.025	0.109
<i>u</i> 86 <i>u</i> 00	$H(8)\cdots H'(5)$	4.232(20)	0.130(fixed)	_0.025	0.130
u89 Use	$H'(8) \cdots H(10)$	4.289(22)	0.152(fixed)	-0.010	0.152
<i>u</i> 92	$H'(8) \cdots B(0)$	4.300(40)	0.205(1100)	-0.010	0.203
<i>u</i> 93	H'(7)H'(5)	4.371(20)	$0.214(100 to u_5)$ 0.208(fixed)	-0.018	0.102
и90 Цес	H(7)H(5)	4.424(33)	0.200(11xcd) 0.201(fixed)	-0.047	0.200
и91 Иот	H(7)H(5)	4.430(20)	0.201(HACU) 0.104(fixed)	-0.047	0.201 0.104
<i>и</i> 97	H(y) = H(y)	4.001(23)	0.174(11XCU) 0.160(tight to the)	-0.044	0.194
<i>U</i> 94	$\Gamma(0) = D(9)$ $\Gamma(1) = \Gamma(1)$	4.032(23)	$0.109(100 \ 10 \ u_5)$ 0.166(tipd to u)	-0.022	0.144 0.141
<i>u</i> 96	U(4) $II(12)$	4.030(20)	$0.100(100 \ 10 \ u_5)$	-0.010	0.141
u_{95}	п(о)…п(11)	4.0/1(3/)	0.231(11xed)	-0.010	0.231

u_{98} C(8)···H(12) 4.744(17) 0.144(tied to u_5) -0	.022 0.123
u_{100} H'(8)···H(11) 4.777(39) 0.213(fixed) -0	.025 0.213
u_{99} H'(7)···H(3) 4.870(24) 0.132(fixed) -0	.052 0.132
u_{101} H(8)···H(10) 5.015(36) 0.198(fixed) -0	.027 0.198
u_{102} H'(8)···H(12) 5.266(32) 0.213(fixed) -0	.034 0.213
u_6 H(4)···B(9) 5.268(14) 0.123(tied to u_5) -0	.010 0.105
u_{103} H(8)···H(12) 5.514(27) 0.175(fixed) -0	.038 0.175
u_{104} H(4)···H(12) 5.715(21) 0.162(fixed) -0	.017 0.162

Figur	e 2 for atom numb	ering.			
	Atom pair	ra	$u_{\rm h1}$ (exp.)	$k_{\rm h1}$	$u_{\rm h1}$ (calc.)
u_{10}	C(8)–H′(8)	1.107(1)	0.097(1)	0.004	0.075
u_9	C(8)–H(8)	1.107(1)	0.097 (tied to u_{10})	0.004	0.075
u_7	C(7)–H′(7)	1.107(1)	0.096 (tied to u_{10})	0.004	0.074
u_8	C(7) - H(7)	1.107(1)	0.096 (tied to u_{10})	0.004	0.074
u_1	C(4) - H(4)	1.107(1)	0.097 (tied to u_{10})	0.004	0.075
u_{11}	N(1) - C(7)	1.481(2)	0.060(1)	0.001	0.049
u_{12}	C(8) - C(4)	1.528(2)	0.061 (tied to u_{11})	0.002	0.050
u_{13}	C(7) - C(8)	1.535(2)	0.062 (tied to u_{11})	0.001	0.051
u_{14}	Al(9) - H(12)	1.585(7)	0.116 (tied to u_{11})	0.004	0.095
u_{16}	H(8)····H'(8)	1.770(20)	0.119(fixed)	0.003	0.119
u_{15}	$H'(7)\cdots H(7)$	1.792(18)	0.118(fixed)	0.003	0.118
u_{13}	N(1) - Al(9)	2.033(5)	0.082(2)	0.003	0.075
u_2 u_{17}	$N(1) \cdots H(7)$	2.096(12)	0.110 (tied to u_2)	0.001	0 100
<i>U</i> 10	$N(1) \cdots H'(7)$	2.090(12) 2.113(12)	0.111 (tied to u_2)	0.001	0 101
<i>u</i> ₁₈	$H(7) \cdots C(8)$	2.119(12) 2.150(20)	0.111 (tied to u_2) 0.113(tied to u_2)	0.001	0.101
<i>u</i> ₂₄	$H'(8) \cdots C(4)$	2.150(20) 2.165(13)	0.113 (tied to u_2) 0.114(tied to u_2)	0.001	0.103
<i>u</i> 19	$H(8) \cdots C(4)$	2.103(13) 2.177(13)	$0.114(\text{tied to } u_2)$ 0.116(tied to u_2)	0.001	0.104
u21	$\Gamma(8) = C(4)$ $\Gamma(8) = H(4)$	2.177(13) 2 170(3)	$0.110(\text{tied to } u_2)$ $0.113(\text{tied to } u_2)$	0.001	0.103
<i>u</i> ₂₀	$C(3) \Pi(4)$ $C(7) \dots \Pi'(8)$	2.179(3) 2.181(10)	$0.113(\text{tied to } u_2)$ $0.113(\text{tied to } u_2)$	0.003	0.103
<i>u</i> ₂₃	U(7) = C(8)	2.101(19) 2.109(15)	$0.113(\text{tred to } u_2)$ $0.112(\text{tred to } u_2)$	0.001	0.103
u_{25}	$\Pi(7)$ $U(8)$	2.198(13)	$0.112(\text{lied to } u_2)$ 0.114(tigd to u)	0.002	0.102
u_{22}	U(7) H(8)	2.215(18)	$0.114(1100 to u_2)$	0.001	0.104
u_{26}	$H(7) \cdots H(8)$	2.349(33)	0.168(fixed)	0.029	0.168
u_{27}	$H'(7)\cdots H'(8)$	2.368(28)	0.169(11xed)	0.029	0.169
u_{29}	$C(7)\cdots C(2)$	2.3/3(5)	$0.0/3$ (tied to u_{32})	-0.00/	0.06/
u_{28}	$H'(7)\cdots H(6)$	2.438(27)	0.228(fixed)	0.033	0.228
u_{33}	$C(7)\cdots C(4)$	2.459(6)	0.067 (tied to u_{32})	-0.011	0.062
u_{30}	$H(8)\cdots H(4)$	2.462(19)	0.163(fixed)	0.014	0.163
u_{31}	$C(8)\cdots C(3)$	2.474(3)	0.076 (tied to u_{32})	-0.006	0.070
u_{32}	$N(1)\cdots C(8)$	2.509(5)	0.067(4)	-0.011	0.062
u_{36}	C(7)···H(6)	2.512(18)	0.190 (tied to u_{32})	0.000	0.176
u_{34}	H'(8)…H(4)	2.566(19)	0.170(fixed)	0.009	0.170
u_{35}	$H(8)\cdots H'(3)$	2.570(30)	0.242(fixed)	0.026	0.242
u_3	$N(1)\cdots C(4)$	2.603(6)	0.066 (tied to u_{32})	-0.002	0.060
u_{38}	C(8)…H'(3)	2.646(19)	0.192 (tied to u_{32})	-0.001	0.177
u_{51}	H(7)…H'(3)	2.651(33)	0.622(fixed)	-0.024	0.622
u_{39}	H(12)…H(11)	2.699(15)	0.157(fixed)	-0.001	0.157
u_{37}	C(7)…H'(2)	2.725(15)	0.211 (tied to u_{46})	-0.004	0.178
u_{43}	$C(7) \cdots C(3)$	2.748(10)	0.160 (tied to u_{32})	-0.022	0.147
u_{40}	H'(7)…H(10)	2.775(39)	0.328(fixed)	0.069	0.328
u_{45}	N(1)…H(12)	2.780(16)	0.188 (tied to u_{46})	-0.003	0.158
u_{42}	C(8)…H(5)	2.818(18)	0.212 (tied to u_{46})	-0.004	0.179
u_{44}	H'(7)…H(8)	2.841(27)	0.177(fixed)	-0.006	0.177
u_{41}	H(7) - H(11)	2.857(35)	0.323(fixed)	0.068	0.323
U52	H(7)····C(3)	2.873(25)	0.369(fixed)	-0.028	0.369
U47	$C(7) \cdots C(5)$	2.919(4)	0.129 (tied to u_{46})	-0.025	0.109
u_{53}	$C(7) \cdots H'(3)$	2.929(26)	0.420 (tied to u_{46})	-0.028	0.353
		· /	(10)		

Table S6 Interatomic distances (r_a in Å), experimental and calculated amplitudes of vibration (u_{h1} in Å) and curvilinear corrections (k_{h1} in Å) from the SARACEN refinement of **3**. See Figure 2 for atom numbering.

u_{46}	C(7)···Al(9)	2.930(3)	0.124(2)	0.007	0.105
u_{49}	H'(7)…Al(9)	2.955(19)	0.221 (tied to u_{46})	0.023	0.186
u_{48}	H(7)…H'(8)	2.961(20)	0.157(fixed)	-0.015	0.157
u_{55}	H(7)…C(4)	3.041(21)	0.221 (tied to u_{46})	-0.023	0.186
u_{54}	N(1)…H'(8)	3.123(22)	0.209 (tied to u_{46})	-0.022	0.176
u_{50}	H(7) - Al(9)	3.140(22)	0.240 (tied to u_{46})	0.013	0.202
u_{56}	C(7) - H(11)	3.171(27)	0.303 (tied to u_{46})	0.013	0.255
u_{62}	$H'(7) \cdots H(11)$	3.263(41)	0.395(fixed)	0.007	0.395
u_{57}	C(7) - H(10)	3.263(28)	0.232 (tied to u_{58})	0.009	0.255
u_{59}	$H'(7)\cdots C(4)$	3.309(11)	0.134 (tied to u_{58})	-0.028	0.148
u_{60}	C(7)····H(2)	3.313(8)	0.090 (tied to u_{58})	-0.018	0.099
u_{61}	$C(7) \cdots H'(6)$	3.330(8)	0.090 (tied to u_{58})	-0.015	0.099
u_{58}	N(1)…H(8)	3.350(15)	0.128(5)	-0.027	0.141
u_{65}	C(8)…H'(5)	3.429(9)	0.091 (tied to u_{58})	-0.017	0.100
<i>u</i> ₆₇	$C(7) \cdots H(4)$	3.432(6)	0.090 (tied to u_{58})	-0.016	0.099
U66	C(8)…H(3)	3.437(9)	0.091 (tied to u_{58})	-0.015	0.100
u_{63}	H'(7)…C(5)	3.476(15)	0.278 (tied to u_{58})	-0.042	0.306
<i>u</i> ₆₄	C(7)····H(5)	3.484(18)	0.266 (tied to u_{58})	-0.040	0.293
u_{68}	$H(7)\cdots H(2)$	3.564(19)	0.166(fixed)	-0.022	0.166
U69	$H'(7) \cdots H'(2)$	3.648(20)	0.170(fixed)	-0.012	0.170
<i>u</i> ₇₂	H'(8)…H'(3)	3.696(20)	0.174(fixed)	-0.021	0.174
u_{70}	$H(7) \cdots H(10)$	3.699(39)	0.389(fixed)	-0.013	0.389
u_4	$N(1)\cdots H(4)$	3.708(6)	0.091 (tied to u_{76})	-0.008	0.092
u_{73}	$H(8) \cdots H(3)$	3.757(22)	0.178(fixed)	-0.013	0.178
u_{71}	H'(7)…H(5)	3.766(24)	0.545(fixed)	-0.053	0.545
u_{74}	C(7)····H(3)	3.804(11)	0.123 (tied to u_{76})	-0.046	0.124
u_{76}	$H(7) \cdots C(5)$	3.805(14)	0.112(5)	-0.047	0.113
u_{75}	$H'(7)\cdots C(3)$	3.809(9)	0.122 (tied to u_{76})	-0.048	0.123
u_{77}	C(7) - H'(5)	3.822(12)	0.111 (tied to u_{76})	-0.046	0.112
u_{78}	$H(7) \cdots H(4)$	3.929(23)	0.218(fixed)	-0.030	0.218
u_{81}	$H(7) \cdots H(3)$	3.948(26)	0.360(fixed)	-0.063	0.360
u_{83}	$H'(7)\cdots H'(3)$	4.020(27)	0.347(fixed)	-0.065	0.347
u_{79}	C(7) - H(12)	4.078(14)	0.145 (tied to u_{76})	-0.023	0.146
u_{80}	H'(7)…H(2)	4.168(17)	0.131(fixed)	-0.015	0.131
u_{82}	H'(7)…H(4)	4.217(13)	0.176(fixed)	-0.037	0.176
u_{84}	H(8)····H′(5)	4.295(19)	0.133(fixed)	-0.017	0.133
u_{85}	H'(7)…H(12)	4.295(22)	0.197(fixed)	-0.022	0.197
u_{87}	C(8)····Al(9)	4.328(4)	0.161(4)	-0.016	0.101
u_{86}	H(7)…H(12)	4.349(26)	0.210(fixed)	-0.025	0.210
u_{89}	H(7)…H(5)	4.455(19)	0.246(fixed)	-0.075	0.246
u_{88}	H'(7)…H'(5)	4.457(17)	0.259(fixed)	-0.075	0.259
u_{90}	C(8)…H(10)	4.582(26)	0.273 (tied to u_5)	-0.014	0.248
u_{92}	H(7)…H'(5)	4.585(17)	0.221(fixed)	-0.070	0.221
u_5	C(4)···Al(9)	4.631(6)	0.096(4)	-0.007	0.088
u_{91}	C(8)…H(11)	4.640(26)	0.267 (tied to u_5)	-0.017	0.243
u 94	H'(8)…H(10)	4.720(40)	0.364(fixed)	-0.010	0.364
u_{95}	H'(8)…Al(9)	4.808(25)	0.242 (tied to u_5)	-0.030	0.220
u_{93}	H'(7)…H(3)	4.827(10)	0.146(fixed)	-0.080	0.146
<i>u</i> ₉₆	H(8)…Al(9)	5.063(18)	0.192 (tied to u_5)	-0.036	0.175
U 97	H(8)…H(11)	5.080(34)	0.332(fixed)	-0.022	0.332

u_{98}	C(4)…H(12)	5.141(20)	0.220 (tied to u_5)	-0.015	0.201
u_{99}	C(8)…H(12)	5.269(17)	0.181 (tied to u_5)	-0.040	0.165
u_{100}	H′(8)…H(11)	5.292(36)	0.285(fixed)	-0.042	0.285
u_{101}	H(8)…H(10)	5.391(34)	0.278(fixed)	-0.043	0.278
u_6	H(4)…Al(9)	5.733(6)	0.123 (tied to u_5)	-0.015	0.112
u_{102}	H'(8)…H(12)	5.783(32)	0.275(fixed)	-0.059	0.275
u_{103}	H(8)…H(12)	6.069(23)	0.229(fixed)	-0.067	0.229
u_{104}	H(4)…H(12)	6.202(21)	0.221(fixed)	-0.024	0.221

Table S7 Least-squares correlation matrix ($\times 100$) from the GED refinement of **2**.^{*a*}

	p_2	p_4	p_{13}	p_{19}	u_{14}	u_{30}	u_{50}	u_{57}	u_{79}	k_1	k_2
p_1	76										
p_3		-91									
p_5					62						
p_7			-71	-63							
p_{19}						-68		65			
u_{14}							61				60
u_{50}										53	59
u_{57}									50		
k_1											53

^{*a*} Only values \geq 50% are shown; k_1 and k_2 are scale factors.

	x	У	Z
N(1)	0.0000	0.0000	0.0000
C(2)	1.2155	-0.7017	-0.4979
H(2)	1.0756	-1.7575	-0.2484
H′(2)	2.0572	-0.3175	0.0854
C(3)	1.3003	-0.6205	-2.0322
H(3)	1.5026	-1.5794	-2.5181
H'(3)	2.1451	0.0422	-2.2406
C(4)	0.0000	0.0000	-2.5644
H(4)	0.0000	0.0000	-3.6582
C(5)	-1.1875	-0.8158	-2.0322
H(5)	-2.1190	-0.5116	-2.5181
H′(5)	-1.0360	-1.8788	-2.2406
C(6)	-1.2155	-0.7017	-0.4979
H(6)	-2.0598	-0.0528	-0.2484
H′(6)	-1.3036	-1.6228	0.0854
C(7)	0.0000	1.4035	-0.4979
H(7)	0.9842	1.8102	-0.2484
H′(7)	-0.7536	1.9403	0.0854
C(8)	-0.1127	1.4363	-2.0322
H(8)	0.6165	2.0909	-2.5181
H′(8)	-1.1091	1.8366	-2.2406
B(9)	0.0000	0.0000	1.6226
H(10)	-1.0764	0.4736	1.9562
H(11)	0.9484	0.6954	1.9562
H(12)	0.1281	-1.1690	1.9562

Table S8 Cartesian coordinates	(in Å) for the GED-refined structure (r_1	11) of 2 .
--------------------------------	-------	---	-------------------

Table S9 Least-squares correlation matrix ($\times 100$) from the GED refinement of 3 . ^{<i>a</i>}											
	p_3	p_4	p_7	p_{19}	u_1	u_{29}	u_{47}	u_{59}	u_{73}	u_{90}	k_2
p_1		-50	-80	66	76		70	62			
p_2	-90										
p_4						74					
p_6											55
p_7				-62	-67		-95	-77			
p_{10}									-56		
p_{19}					58		60	70			
u_1							63	57			
u_6										52	
u_{12}											50
u_{29}											52
u_{47}								76			
^{<i>a</i>} Only values \geq 50% are shown; k_2 is a scale factor.											

Table S10 Cartesian coordinates (in Å) for the GED-refined structure (r_{h1}) of **3**.

	x	У	Z
N(1)	0.0000	0.0000	0.0000
C(2)	1.1908	-0.6875	-0.5527
H(2)	1.0809	-1.7706	-0.3307
H'(2)	2.0932	-0.3187	-0.0196
C(3)	1.3314	-0.5304	-2.0744
H(3)	1.6033	-1.4793	-2.5845
H′(3)	2.1420	0.1908	-2.3140
C(4)	0.0000	0.0000	-2.6063
H(4)	0.0000	0.0000	-3.7174
C(5)	-1.1250	-0.8878	-2.0744
H(5)	-2.0828	-0.6488	-2.5845
H′(5)	-0.9057	-1.9504	-2.3140
C(6)	-1.1908	-0.6875	-0.5527
H(6)	-2.0739	-0.0507	-0.3307
H′(6)	-1.3226	-1.6534	-0.0196
C(7)	0.0000	1.3750	-0.5527
H(7)	0.9930	1.8214	-0.3307
H'(7)	-0.7706	1.9721	-0.0196
C(8)	-0.2064	1.4182	-2.0744
H(8)	0.4795	2.1281	-2.5845
H′(8)	-1.2362	1.7596	-2.3140
Al(9)	0.0000	0.0000	2.0330
H(10)	-1.4080	0.6804	2.3168
H(11)	1.2932	0.8792	2.3168
H(12)	0.1148	-1.5595	2.3168

ng ar ogen atoms	in the ergstar stractary	e of 1 . Dee i iguite 1 i	ter atem manneering.		
Atom	x	у	Z	$U_{ m equiv}$	
B(9)	0.5879(2)	0.0879(2)	0.4121(2)	0.0420	
N(1)	0.68782(14)	0.18782(14)	0.31218(14)	0.0256	
C(2)	0.67891(19)	0.34236(19)	0.35833(18)	0.0323	
C(3)	0.7903(2)	0.43414(18)	0.2794(2)	0.0360	
C(4)	0.84827(19)	0.34827(19)	0.15173(19)	0.0340	

Table S11 Atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for non-hydrogen atoms in the crystal structure of **2**. See Figure 2 for atom numbering.

Table S12 Atomic coordinates and isotropic thermal parameters $(Å^2)$ for the hydrogen atoms in the crystal structure of **2**. See Figure 2 for atom numbering.

Atom	x	у	Z	$U_{ m iso}$
H(10)	0.597(3)	-0.025(3)	0.362(2)	0.058(7)
H(2)	0.6969	0.3485	0.4643	0.0388
H′(2)	0.5805	0.3800	0.3365	0.0388
H(3)	0.8710	0.4586	0.3462	0.0432
H′(3)	0.7442	0.5248	0.2441	0.0432
H(4)	0.9104	0.4104	0.0896	0.0408

Table S13 Anisotropic thermal parameters $(Å^2)$ for the crystal structure of **2**. See Figure 2 for atom numbering.

	0					
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
B(9)	0.0420(10)	0.0420(10)	0.0420(10)	0.0084(10)	0.0084(10)	-0.0084(10)
N(1)	0.0256(5)	0.0256(5)	0.0256(5)	-0.0023(6)	-0.0023(6)	0.0023(6)
C(2)	0.0366(9)	0.0288(9)	0.0315(9)	-0.0049(7)	0.0032(7)	0.0039(8)
C(3)	0.0420(11)	0.0257(9)	0.0402(10)	-0.0022(7)	-0.0025(9)	-0.0016(8)
C(4)	0.0340(7)	0.0340(7)	0.0340(7)	0.0034(8)	0.0034(8)	-0.0034(8)
			· · ·			

Figure S1 Experimental and difference (experimental – theoretical) molecular-scattering intensity curves for 1.

Figure S2 Experimental and difference (experimental – theoretical) molecular-scattering intensity curves for **2**.

Figure S3 Experimental and difference (experimental – theoretical) molecular-scattering intensity curves for 3.

