Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2007

Supporting Information

Kinetics and mechanism of the substitution behaviour of Pd(II) piperazine complexes with different biologically relevant nucleophiles

Azza Shoukry,^{a,b} Malgorzata Brindell^{b,c} and Rudi van Eldik^{b,*}

^aDepartment of Chemistry, Faculty of Science, Cairo University, Egypt
^bInstitute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058
Erlangen, Germany vaneldik@chemie.uni-erlangen.de
^cDepartment of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland

Nu	T/°	С	$k_1 \ge 10^{-3} / \mathrm{M}^{-1} \mathrm{s}^{-1}$	k_{-1} / s^{-1}	$k_2 / M^{-1} s^{-1}$	k_{-2} / s^{-1}	$k_3 / M^{-1} s^{-1}$	k_{-3} / s^{-1}
5'-GMP	10		1.0 ± 0.1					
	15		1.6 ± 0.1					
	20		2.6 ± 0.1		0.19 ± 0.02			
	25		3.7 ± 0.1		0.28 ± 0.01			
	30		4.7 ± 0.6		0.40 ± 0.01			
		$\Delta H^{\neq} / kJ mol^{-1}$	51 ± 3		52 ± 4			
		ΔS^{\neq} / J K ⁻¹ mol ⁻¹	-7 ± 9		-80 ± 14			
L-Met	5		35 ± 3	23 ± 11	81 ± 19	1.8 ± 0.1		
	10		40 ± 5	45 ± 30	112 ± 42	2.1 ± 0.4		
	15		50 ± 2	56 ± 17	132 ± 19	2.8 ± 0.1		
	20		62 ± 5	80 ± 31	168 ± 21	3.3 ± 0.1		
		$\Delta H^{\neq} / kJ mol^{-1}$	21 ± 3	_	30 ± 3	33 ± 5		
		ΔS^{\neq} / J K ⁻¹ mol ⁻¹	-78 ± 11	_	-99 ± 11	-122 ± 18		
tu	5		73 ± 8					
	20				84 ± 5	0.12 ± 0.07	6.4 ± 0.9	0.034 ± 0.008
	25				106 ± 2	0.35 ± 0.03	7.8 ± 0.5	0.038 ± 0.005
	30				146 ± 5	0.43 ± 0.08	8.2 ± 0.9	0.041 ± 0.008
	35				193 ± 8	0.92 ± 0.12	8.8 ± 0.9	0.048 ± 0.007
		$\Delta H^{\neq} / kJ mol^{-1}$	_		39 ± 3	_	13 ± 3	15 ± 3
		ΔS^{\neq} / J K ⁻¹ mol ⁻¹	_		-75 ± 9	_	-185 ± 9	-223 ± 9

Table S1. Summary of the rate constants at various temperature and activation parameters for the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with 5'-GMP, L-Met and tu, I = 0.1 M.

Figure S1. Concentration distribution of various species for $[Pd(Pip)(H_2O)_2]^{2+}$ as a function of pH.

Figure S2. UV-Vis spectra for the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with 5'-GMP⁻ recorded before (1) and after 0.25 (2) and 30 min (3) following mixing of the reactants. Experimental conditions: $[Pd(II)] = 0.5 \text{ mM}, [5'-GMP]_{Tot} = 0.01 \text{ M}, I = 0.1 \text{ M}, T = 25 \text{ °C}.$

Figure S3. Concentration and temperature dependence for the first step of the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with 5'-GMP⁻. Experimental conditions: [Pd(II)] = 0.25 mM, $[5'-GMP]_{Tot} = 2.5 - 25$ mM, I = 0.1 M, pH = 5.3-5.6, T = 10 - 30 °C (every 5°C).

Figure S4. UV-Vis spectra for the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with L-Met recorded before (1) and after 0.25 (2), 1 (3), 5 (4) 15 (5) and 30 min (6) following mixing of the reactants. Experimental conditions: [Pd(II)] = 0.5 mM, [L-Met] = 0.01 M, I = 0.1 M, T = 25 °C.

Figure S5. Concentration and temperature dependence for the first step of the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with L-Met. Experimental conditions: [Pd(II)] = 0.25 mM, [L-Met] = 2.5 - 10 mM, I = 0.1 M, pH = 3.5, T = 5 - 20 °C (every 5°C).

Figure S6. Concentration and temperature dependence for the second step of the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with L-Met. Experimental conditions: [Pd(II)] = 0.25 mM, [L-Met] = 2.5 - 10 mM, I = 0.1 M, pH = 3.5, T = 5 - 20 °C (every 5°C).

Figure S7. Concentration dependence for the first step of the reaction of $[Pd(Pip)(H_2O)_2]^{2+}$ with tu. Experimental conditions: [Pd(II)] = 0.25 mM, [L-Met] = 5 - 30 mM, I = 0.1 M, pH = 3.7, T = 5 °C.

Figure S8. Selected region of the ¹H NMR spectrum of $[Pd(Pip)(D_2O)_2]^{2+}$ (D₂O solution) before (1) and after (2) addition of tu. The new resonance at 3.08 ppm is attributed to CH₂ groups of free piperazine. Experimental conditions: [Pd(II)] = 0.017 M, [tu] = 0.07 M, T = 25 °C.

Figure S9. Concentration and temperature dependence for the third step of the reaction of $[Pd(Pip)(H_2O)_2]^{2^+}$ with tu. [Pd(II)] = 0.25 mM, [tu] = 2.5 - 30 mM, I = 0.1 M, pH = 3.7, T = 20 - 35 °C (every 5°C).