Supporting Information

Bimetallic Phenylene-Bridged Cp/amide Titanium Complexes and their Olefin Polymerization

Sang Hoon Lee, a Chun Ji Wu, Ui Gab Joung, Bun Yeoul Lee, and Jinil Park

^aDepartment of Molecular Science and Technology and ^bSchool of Mechanical Engineering, Ajou University, Suwon 443-749 Korea; Email: bunyeoul@ajou.ac.kr; fax: 82-31-219-2394; Tel: 82-31-219-

1844

Synthetic details and characterizations of 4, 6, 8, 10-11, 14-15, 16-17, and 19-20

Compound 4. The compound was synthesized from 2,6-dibromo-4-fluoroaniline (1.82 g, 6.77 mmol) using same conditions and procedure as for **3**. Yellow solid was obtained ((1.02 g, 50 %). M.p. 204 °C. IR (neat): 3440 and 3363 (N-H), 1697 (C=O) cm⁻¹. NMR (CDCl₃): δ 2.10 (s, 6H, CH₃), 2.56 (br t, J = 4.4 Hz, 4H, CH₂), 2.72 (br t, J = 3.2 Hz, 4H, CH₂), 3.52 (br s, 2H, NH), 6.65 (d, J = 8.8 Hz, 2H, C₆H₂) ppm. 13 C{ 1 H} NMR (CDCl₃): δ 18.64, 32.05, 34.80, 116.61 (d, $^{2}J_{CF}$ = 22.0 Hz), 119.85 (d, $^{3}J_{CF}$ = 7.6 Hz), 138.48, 139.05, 154.77 (d, $^{1}J_{CF}$ = 235.1 Hz), 175.47, 207.09 ppm. Anal. Calc. (C₁₈H₁₈FNO₂): C: 72.22; H, 6.06; N, 4.68 %. Found: C, 71.17; H, 6.30; N, 4.81 %.

Compound 6. The compound was synthesized from **4** (0.372 g, 1.24 mmol) using same conditions and procedures as for **5**. Orange solid was obtained (0.209 g, 57 %). M.p. 120 °C. IR (neat): 3471 and 3379 (N-H) cm⁻¹. ¹H NMR (C₆D₆): δ 1.79 (s, 3H, CH₃), 1.81 (s, 3H, CH₃), 1.88 (q, J = 2.0 Hz, 3H, CH₃),

1.90 (q, J = 2.0 Hz, 3H, CH₃), 2.76 (s, 4H, CH₂), 3.27 (br s, 2H, NH), 5.91 (s, 2H, Cp-H), 6.79 (s, 1H, C₆H₂), 6.81 (s, 1H, C₆H₂) ppm. ¹³C{¹H} NMR (C₆D₆): δ 14.72, 14.76, 14.82, 44.66, 115.81 (d, ² $J_{CF} = 21.3$ Hz), 115.89 (d, ² $J_{CF} = 21.3$ Hz), 123.24 (d, ³ $J_{CF} = 6.5$ Hz), 234.31 (d, ³ $J_{CF} = 6.5$ Hz), 124.94, 124.99, 139.35, 139.51, 139.76, 139.85, 141.52, 141.72, 143.54, 143.67, 155.61 (d, ¹ $J_{CF} = 233.6$ Hz), 155.67 (d, ¹ $J_{CF} = 233.6$ Hz) ppm. Anal. Calc. (C₂₀H₂₂FN): C: 81.32; H, 7.31; N, 4.74 %. Found: C, 81.10; H, 7.25; N, 4.68 %.

Complex 8. The complex was synthesized using same conditions and procedure as for **7**. Overall yield from **6** (0.188 g, 0.64 mmol) was 74 % (0.264 g). ¹H NMR (C₆D₆) for the intermediate bis(dimethylamido)titanium complex: δ 1.93 (s, 12H, CH₃), 3.07 (s, 24H, N-CH₃), 5.66 (s, 4H, Cp-H), 6.86 (s, 1H, C₆H₂), 6.87 (s, 1H, C₆H₂) ppm. Analytically pure crystals of **8** were obtained in toluene solution at -30 °C. The analytical data for **8**: ¹H NMR (CDCl₃): δ 2.23 (s, 12H, CH₃), 6.72 (s, 4H, Cp-H), 7.01 (d, 1H, J_{HF} = 8 Hz, C₆H₂) ppm. ¹³C{¹H} NMR (CDCl₃): δ 15.41, 115.40 (d, ² J_{CF} = 23.5 Hz), 119.17, 123.55 (d, ³ J_{CF} = 9.1 Hz), 128.17, 138.22, 142.82, 160.41 (d, ¹ J_{CF} = 23.5 Hz) ppm. Anal. Calc. (C₂₀H₁₈Cl₄NTi₂): C: 45.42; H, 3.43; N, 2.65 %. Found: C, 45.27; H, 3.39; N, 2.67 %.

4,4'-Oxobis(N-cyclohexylaniline). The compound was synthesized by the same conditions and procedures as for 4,4'-methylenebis(*N*-cyclohexylaniline) from 4,4'-oxobis(aniline) (10.0 g, 49.94 mmol). It was purified by recrystallization in hexane and ethyl acetate (2 : 1). A white solid was obtained (10.05 g, 56 %). M.p. 104 °C, IR (neat): 3394 (N-H) cm⁻¹. ¹H NMR (C_6D_6): δ 0.87-0.93 (m, 4H, Cy), 1.04-1.19 (m, 6H, Cy), 1.46-1.59 (m, 6H, Cy), 1.88-1.91 (m, 4H, Cy), 2.96-3.00 (m, 2H, N-CH), 2.98 (br s, 2H, NH), 6.39 (d, J = 8.8 Hz, 4H, C_6H_4), 7.07 (d, J = 8.8 Hz, 4H, C_6H_4) ppm. ¹³C NMR (C_6D_6): δ 25.48, 26.50, 33.81, 52.39, 114.63, 120.04, 143.46, 150.34 ppm. Anal. Calc. ($C_{24}H_{32}N_2O$): C, 79.08; H, 8.85; N, 7.68 %. Found: C, 78.98; H, 8.84 N, 7.34 %.

4,4'-Oxobis(**2-bromo-N-cyclohexylaniline**) (**10**). Bromination reaction with Br₂ did not afford the desired compound. Bromination was carried out by the reported method. It was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (20 : 1). A yellow solid was obtained (2.44 g, 54 %). M.P. 89 °C. IR (neat): 3402 (N-H) cm⁻¹. H NMR (C₆D₆): δ 0.93-1.17 (m, 10H, Cy),

1.40-1.56 (m, 6H, Cy), 1.78-1.82 (m, 4H, Cy), 2.98 (br s, 2H, N-CH), 4.08 (br d, J = 4.0 Hz, 2H, NH), 6.38 (d, J = 8.8 Hz, 2H, C₆H₃), 6.88 (dd, J = 9.2 Hz, J = 2.8 Hz, 2H, C₆H₃), 7.34 (d, J = 3.2 Hz, 2H, C₆H₃) ppm. ¹³C NMR (C₆D₆): δ 25.18, 26.25, 33.31, 52.13, 110.06, 112.64, 119.36, 123.47, 140.79, 149.12 ppm. Anal. Calc. (C₂₄H₃₀Br₂N₂O): C, 55.19; H, 5.79; N, 5.36 %. Found: C, 55.59; H, 5.83; N, 5.39 %.

4,4'-o-Phenylenebis(N-cyclohexylaniline). The compound was synthesized by the same conditions and procedures as for 4,4'-methylenebis(*N*-cyclohexylaniline) from 4,4'-*o*-phenylenebis(aniline) (3.84 g, 14.75 mmol). Molecular sieves were removed by filtration while the solution is hot. In the reduction reaction, solvent was MeOH and reaction time was 7 hours. It was purified by recrystallization in hexane (4.41 g, 71 %). M.p. 169-171 °C. IR (neat): 3432 (N-H) cm⁻¹. 1 H NMR (C_6D_6): δ 0.80-0.85 (m, 4H, Cy), 0.99-1.14 (m, 6H, Cy), 1.44-1.53 (m, 6H, Cy), 1.80-1.82 (m, 4H, Cy), 2.93-2.97 (m, 2H, N-CH), 3.05 (br s, 2H, NH), 6.34 (d, J = 8.4 Hz, 4H, C_6H_4N), 7.27 (d, J = 8.4 Hz, 4H, C_6H_4N), 7.26 (dd, AA'BB', 2H, C_6H_4), 7.55 (AA'BB', 2H, C_6H_4) ppm. $^{13}C\{^{1}H\}$ NMR (C_6D_6): δ 25.26, 26.24, 33.55, 51.43, 112.83, 126.80, 130.83, 130.94, 131.04, 141.01, 146.01 ppm. Anal. Calc. ($C_{30}H_{36}N_2$): C, 84.86; H, 8.55; N, 6.60 %. Found: C, 84.50; H, 8.50; N, 6.42 %.

4,4'-o-Phenylenebis(2-bromo-N-cyclohexylaniline) (**11).** The compound was synthesized by the same conditions and procedures as for **9** from 4,4'-*o*-phenylenebis(*N*-cyclohexylaniline) (3.26 g, 7.68 mmol). It was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (20 : 1). Light yellow solid was obtained in 70 % yield (3.17 g). M.p. 78-80 °C. IR (neat): 3399 (N-H) cm⁻¹. ¹H NMR (C_6D_6): δ 1.00-1.77 (m, 20H, Cy), 2.89 (m, 2H, N-CH), 4.24 (d, J = 7.6 Hz, 2H, NH), 6.24 (d, J = 8.4 Hz, 2H, C_6H_3), 6.96 (dd, J = 8.4, 2.0 Hz, 2H, C_6H_3), 7.16 (AA'BB', 2H, C_6H_4) ppm ¹³C{¹H} NMR (C_6D_6): δ 25.14, 26.17, 33.20, 51.53, 109.79, 111.47, 127.42, 130.77, 130.83, 131.30, 133.79, 139.52, 142.97 ppm. Anal. Calc. ($C_{30}H_{34}Br_2N_2$): C, 61.85; H, 5.88; N, 4.81 %; Found: C, 62.18; H, 5.64; N, 5.07 %.

Compound 13. The compound was synthesized by same conditions and procedures as for **3** using **10** (1.88g, 3.60 mmol). It was purified by column chromatography on silica gel eluting with hexane and

ethyl acetate (3 : 1). A light yellow solid was obtained (1.07 g, 51 %). M.p. 182 °C. IR (neat): 3448 (N-H), 1502 (C=O) cm⁻¹. ¹H NMR (CDCl₃): δ 1.12-1.25 (m, 6H, Cy), 1.31 (d, J = 7.2, 6H, CH₃), 1.36-1.42 (m, 4H, Cy), 1.63-1.75 (m, 6H, Cy), 2.02 (s, 6H, CH₃), 1.98-2.03 (m, 4H, Cy), 2.17 (d, J = 18.0, 2H, CH₂), 2.80 (dd, J = 18.4, 6.4 Hz, 2H, CH₂), 2.91-2.94 (m, 2H, CH), 3.19-3.24 (m, 2H, N-CH), 3.35 (br s, 2H, NH), 6.59 (d, J = 3.2 Hz, 2H, C₆H₃), 6.67 (d, J = 8.8 Hz, 2H, C₆H₃), 6.91 (dd, J = 8.8, 2.8 Hz, 2H, C₆H₃) ppm. ¹³C{¹H} NMR (CDCl₃): δ 16.32, 19.43, 24.92, 25.96, 33.32, 37.75, 43.49, 52.18, 112.75, 118.76, 119.18, 120.81, 138.75, 140.95, 148.48, 179.19, 206.35 ppm. Anal. Calc. (C₃₈H₄₉N₂O₃): C, 78.58; H, 8.33; N, 4.82 %. Found: C, 78.75; H, 8.44; N, 4.93 %.

Compound 14. The compound was synthesized by same conditions and procedures as for 3 using 11 (2.50 g, 4.28 mmol). It was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (3 : 1). A light yellow solid was obtained (2.47 g, 90 %). M.p. 109-111 °C. IR (neat): 3386 (N-H), 1695 (C=O) cm⁻¹. ¹H NMR (C₆D₆): δ 0.80-0.82 (m, 4H, Cy), 1.18 (d, J = 8.0 Hz, 6H, CH₃), 1.10-1.24 (m, 6H, Cy), 1.43-1.64 (m, 6H, Cy), 1.64 (s, 6H, CH₃), 1.82 (d, J = 18.4 Hz, 2H, CH₂), 1.97 (br s, 4H, Cy), 2.24-2.26 (m, 2H, CH), 2.40 (dd, J = 18.0, 6.4 Hz, 2H, CH₂), 3.12 (br s, 2H, N-CH), 4.17 (s, 2H, NH), 6.61 (d, J = 8.4 Hz, 2H, C₆H₃), 6.96 (s, 2H, C₆H₃), 7.25 (AA'BB', 2H, C₆H₄), 7.34 (dd, J = 8.4, 2.0 Hz, 2H, C₆H₃), 7.53 (AA'BB', 2H, C₆H₄) ppm. 13 C{ 1 H} NMR (C₆D₆): δ 16.22, 19.44, 19.47, 25.25, 26.48, 33.54, 33.80, 37.92, 43.68, 51.71, 112.00, 118.85, 127.00, 130.80, 130.74, 131.00, 131.16, 133.26, 140.16, 141.08, 145.20, 178.03, 205.40 ppm. Anal. Calc. (C₄₄H₅₂N₂O₂): C, 82.46; H, 8.18; N, 4.37 %. Found: C, 82.13; H, 8.29; N, 4.58 %.

Compound 16. The compound was synthesized by same conditions and procedures as for 15 using 13 (0.302 g, 0.52 mmol). It was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (10 : 1). A white solid was obtained (0.202g, 67 %). M.p. 120 °C. ¹H NMR (C_6D_6): δ 0.89-1.02 (m, 6H, Cy), 1.09-1.19 (m, 4H, Cy), 1.41-1.53 (m, 6H, Cy), 1.79 (s, 6H, CH₃), 1.83 (s, 6H, CH₃), 1.86 (s, 6H, CH₃), 1.88-1.97 (m, 4H, Cy), 2.60 (AB, J = 22.8 Hz, 2H, CH₂), 2.73 (AB, J = 22.4 Hz, 2H, CH₂), 3.07-3.14 (m, 2H, N-CH), 3.60 (d, J = 8.4 Hz, 2H, NH), 6.63 (d, J = 8.8 Hz, 2H, C_6H_3), 7.11 (d, J = 2.8 Hz, 2H, C_6H_3), 7.22 (dd, J = 1.6, 8.8 Hz, 2H, C_6H_3) ppm. ¹³C{¹H} NMR (C_6D_6): δ 12.16, 13.83,

14.72, 25.45, 25.49, 26.41, 33.95, 49.01, 52.22, 111.93, 118.81, 121.28, 124.37, 133.22, 136.15, 136.99, 140.54, 141.30, 149.65 ppm. Anal. Calc. (C₄₀H₅₂N₂O): C, 83.28; H, 9.09; N, 4.86 %. Found: C, 83.08; H, 9.21; N, 4.85 %.

Compound 17. The compound was synthesized by same conditions and procedures as for 15 using 14 (0.435 g, 0.68 mmol). It was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (15 : 1). A light yellow solid was obtained (0.179 g, 41 %). Due to the rotational barrier around C-C bond between the Me₃C₅H₃ and C₆H₃N fragment,² it was obtained as a mixture of two isomers and some signals were split in the NMR spectra. M.p. 109 °C. ¹H NMR (C₆D₆): δ 0.88-1.01 (m, 6H, Cy), 1.08-1.18 (m, 4H, Cy), 1.41-1.53 (m, 6H, Cy), 1.75 (s, 6H, CH₃), 1.85 (s, 6H, CH₃), 1.88 (s, 6H, CH₃), 1.84-1.92 (m, 4H, Cy), 2.68 (AB, J = 22.8 Hz, 2H, CH₂), 2.79 (AB, J = 22.4 Hz, 2H, CH₂), 3.10-3.12 (m, 2H, N-CH), 3.74 (d, J = 5.6 Hz, 2H, NH), 6.59 (d, J = 8.4 Hz, 2H, C₆H₃), 7.12 (s, 2H, C₆H₃), 7.23 (AA'BB', 2H, C₆H₄), 7.36 (dd, J = 2.0, 8.4 Hz, 2H, C₆H₃), 7.57 (AA'BB', 2H, C₆H₄) ppm. 13 C (1 H) NMR (C₆D₆): δ 12.15, 13.90, 14.73, 25.47, 26.34, 33.95, 49.07, 51.61, 110.35, 122.43, 126.79, 130.06, 130.69, 130.71, 131.06, 132.42, 132.47, 132.80, 136.54, 136.76, 140.86, 141.61, 143.97 ppm. Anal. Calc. (C₄₆H₅₆N₂): C, 86.74; H, 8.86; N, 4.40 %. Found: C, 85.74; H, 9.22; N, 4.42 %.

Complex 19. It was synthesized by same conditions and procedures as for 7 using 16 (0.148 g, 0.26 mmol). It was purified by trituration in pentane. Overall yield from 16 was 78 % (0.161 g). The 1 H NMR (C₆D₆) datum for the intermediate bis(dimethylamido)titanium complex: δ 1.12-1.32 (m, 8H, Cy), 1.36-1.47 (m, 6H, Cy), 1.60-1.62 (m, 2H, Cy), 1.63-1.74 (m, 4H, Cy), 1.78 (s, 6H, CH₃), 1.83-1.87(m, H, Cy), 1.89 (s, 6H, CH₃), 2.13 (s, 6H, CH₃), 2.91 (s, 12H, NCH₃), 3.13 (br s, 12H, NCH₃), 5.62 (br s, 2H, Cp-H), 6.68 (br s, 2H, C₆H₃), 7.20 (s, 2H, C₆H₃), 7.23 (d, J = 8.0 Hz, 2H, C₆H₃) ppm. The analytical data for 19: 1 H NMR (C₆D₆): δ 0.89-0.99 (m, 2H, Cy), 1.40-1.47 (m, 6H, Cy), 1.66-1.93 (m, 8H, Cy), 1.70 (s, 6H, CH₃), 1.82 (s, 6H, CH₃), 2.04-2.15 (m, 4H, Cy), 2.10 (s, 6H, CH₃), 5.54-5.59 (m, 2H, N-CH), 6.05 (s, 2H, Cp-H), 6.62 (d, J = 8.8 Hz, 2H, C₆H₃), 7.04 (d, J = 9.2 Hz, 2H, C₆H₃), 7.07 (s, 2H, C₆H₃) ppm. 13 C { 1 H} NMR (C₆D₆): δ 12.72, 14.73, 15.13, 26.06, 27.27, 27.29, 27.32, 27.77, 27.84,

59.87, 111.50, 118.23, 118.56, 120.20, 131.63, 133.93, 140.48, 142.30, 142.74, 154.25, 159.84 ppm. Anal. Calc. (C₄₁H₅₀Cl₄N₂Ti₂): C, 60.92; H, 6.23; N, 3.47 %. Found: C, 61.14; H, 6.31; N, 3.34 %.

Complex 20. It was synthesized by same conditions and procedures as for 7 using 17 (0.180 g, 0.28 mmol). It was purified by trituration in pentane. Overall yield from 17 was 75 % (0.185 g). It was obtained as a mixture of two diastereomers and some signals were split in the 1 H and 13 C NMR spectra. The 1 H NMR (C₆D₆) datum for the intermediate bis(dimethylamido)titanium complex: δ 0.89-1.72 (m, 16H, Cy), 1.80 (s, 6H, CH₃), 1.88 (s, 6H, CH₃), 1.94 (s, 6H, CH₃), 2.76-2.02 (m, 4H, Cy), 2.94 (br s, 12H, NCH₃), 3.13 (s, 12H, NCH₃), 5.65 (br s, 2H, Cp-H), 6.70 (br s, 2H, C₆H₃), 7.27 (br s, 2H, C₆H₃), 7.25 (AA'BB', 2H, C₆H₄), 7.38 (br d, J = 8.0 Hz, 2H, C₆H₃), 7.65 (AA'BB', 2H, C₆H₄) ppm. The analytical data for 20: 1 H NMR (C₆D₆): δ 0.91-2.18 (m, 20 H, Cy), 1.66 and 1.69 (s, 6H, CH₃), 1.75 and 1.78 (s, 6H, CH₃), 2.08 (s, 6H, CH₃), 5.51 (m, 2H, N-CH), 6.05 (s, 2H, Cp-H), 6.52 (d, J = 8.8 Hz, 2H, C₆H₃), 7.10 (d, J = 2.0 Hz, 2H, C₆H₃), 7.24 (dd, J = 2.0, 8.8 Hz, 2H, C₆H₃), 7.30 (AA'BB', 2H, C₆H₄), 7.52 (AA'BB', 2H, C₆H₄) ppm. 13 C { 1 H} NMR (C₆D₆): δ 12.97, 14.76, 15.22, 15.24, 25.87, 30.41, 59.96, 110.86, 118.52, 118.59, 129.87, 130.80, 131.03, 131.82, 131.89, 131.95, 137.06, 140.41, 141.48, 142.55, 142.58, 142.99, 143.07, 162.74 ppm. Anal. Calc. (C₄₆H₅₂Cl₄N₂Ti₂): C, 63.47; H, 6.02; N, 3.22 %. Found: C, 63.78; H, 6.31; N, 3.34 %.

¹ A. R. Hajipour, H. Imanieh, S. A. Pourmousavi, Synth. Commun. 34 (2004) 4597.

² Y. C. Won, U. G. Jeong, E. S. Cho, B. Y. Lee, H. Lee, Y.-W. Park, K. H. Song, Synthesis (2004) 1052.