SUPPORTING INFORMATION accompanying

Copper(II) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity

Edgar Mijangos^a, Jan Reedijk^b, Laura Gasque^a*

^a Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, México D.F. 04510, (México). ^b Leiden Institute of Chemistry, Leiden University. P.O. Box 9502, 2300 RA, Leiden (The Netherlands)

Table of Contents

Figure S1. EPR spectra of 1 and 2.	2
Figure S2. Diffuse reflectance spectra of 1 and 2.	2
Figure S3. Possible protonation degrees of the ligand $H_6Valbiim$.	3
Figure S4. Species distribution diagram for $H_6Valbiim$.	3
Figure S5. Changes in chemical shifts of $H_6Valbiim$ as function of the pH.	4
Figure S6. Initial rates of H ₂ DTBC oxidation in MeOH/H ₂ O and MeCN/H ₂ O.	5
Figure S7. Lineweaver-Burk plots.	6
Figure S8. CV's of dioxygen in MeOH/H ₂ O and MeCN/H ₂ O.	6
Figure S9. IR spectra of 1 and 2.	7
Figure S10. UV-Vis titration in MeOH.	7

Figure S1. Powder EPR spectra at room temperature of the complexes (Black) **1**, $[Cu_4(H_2Valbiim)(H_2O)_{10}](BF_4)_4 \cdot 6H_2O$ and (Red) **2**, $[Cu_4(Valbiim)(\mu-OH)_2(H_2O)_4] \cdot 5H_2O$

Figure S2. Diffuse reflectance spectra of the complexes (Black) **1**, $[Cu_4(H_2Valbiim)(H_2O)_{10}](BF_4)_4 \cdot 6H_2O$ and (Red) **2**, $[Cu_4(Valbiim)(\mu-OH)_2(H_2O)_4] \cdot 5H_2O$ The abnormality near 800 nm is due to change of detector.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2008

Figure S3. Some of the different possible protonation degrees of the ligand H₆Valbiim.

Figure S4. Species distribution diagram as a function of pH for H₆*Valbiim* in aqueous solution.

Figure S5. Changes in chemical shifts of selected ¹HNMR signals of $H_6Valbiim$ as function of the pH.

Figure S6. Dependence of the reaction rates on the H₂DTBC concentrations for the oxidation catalyzed by Cu₄Valbiim in (up) MeOH/H₂O and (down) MeCN/H₂O.

Figure S7. Lineweaver-Burk plot for aerobic oxidation of H₂DTBC by complex Cu₄*Valbiim* in MeCN/H₂O.

Figure S8. Cyclic voltammograms of atmospheric O₂ saturated solutions of 0.1 M HEPES pH = 8.5 in MeCN/H₂O; 1:1 (black line) and MeOH/H₂O; 1:1 (red line) at 78.1 KPa. Scan rate 0.1 Vs⁻¹. Vitreous carbon disk (7.1mm²). Ag/AgBr, 0.1 M Bu₄NBr reference electrode.

Figure S9. IR spectra of the complexes (Black) **1**, $[Cu_4(H_2Valbiim)(H_2O)_{10}](BF_4)_4 \cdot 6H_2O$ and (Red) **2**, $[Cu_4(Valbiim)(\mu-OH)_2(H_2O)_4] \cdot 5H_2O$ in KBr pellet.

Figure S10. UV-Vis spectra of $[Cu_4Valbiim]$ (5 mM) in methanol solution at 25 °C as a function of NBu₄OH added. The first line is the spectrum of a solution 4Cu:H₆Valbiim and the subsequent are the spectra of this solution plus 0.5 to 6 eq.