Homoleptic Tetranuclear Osmium Carbonyls: From the Rhombus via the Butterfly to the Tetrahedron

Bing Xu,^a Qian-Shu Li,^{*a,b} Yaoming Xie,^c R. Bruce King,^{*c} and Henry F. Schaefer III^c

^aInstitute of Chemical Physics, Beijing Institute of Technology, Beijing 100081, China ^bCenter for Computational Quantum Chemistry, South China Normal University, Guangzhou, 510631 China ^cDepartment of Chemistry and Center for Computational Chemistry University of Georgia, Athens, Georgia 30602, USA

Supporting Information

Figures S1 to S7 and Tables S1 to S18: Optimized structures, total energies, relative energies, imaginary vibrational frequencies, and (CO) frequencies for $Os_4(CO)_{16}$ (8 isomers), $Os_4(CO)_{15}$ (5 isomers), $Os_4(CO)_{14}$ (12 isomers), $Os_4(CO)_{13}$ (7 isomers), and $Os_4(CO)_{12}$ (5 isomers)

Complete Gaussian 03 reference (Reference 33)

Figure S1. The four optimized structures of $Os_4(CO)_{16}$ without bridging carbonyl groups.

		16-1 (<i>D</i> ₂)	16-2 (D_{2d})	16-3 (<i>D</i> ₄)	16-4 (D_{4h})
B3LYP/SDD	Е	-2176.34426	-2176.34402	-2176.34170	-2176.33889
	ΔE	0	0.2	1.6	3.4
	Nimag	0	0	1(17i)	2(20i, 19i)
BP86/SDD	Е	-2177.01905	-2177.01806	-2177.01790	-2177.01285
	ΔE	0	0.6	0.7	3.9
	Nimag	0	0	1(11i)	2(25i, 22i)
MPW1PW91/	Е	-2175.90635	-2175.90502	-2175.90459	-2175.89838
SDD	ΔE	0	0.8	1.1	5.0
	Nimag	0	1(14i)	1(16i)	2(27i, 27i)
B3LYP/	Е	-2177.64112	-2177.64060	-2177.63890	-2177.63528
LANL2DZ	ΔE	0	0.3	1.4	3.7
	Nimag	0	0	1(14i)	2(25i, 18i)
BP86/	Е	-2178.21383	-2178.21226	-2178.21316	-2178.20683
LANL2DZ	ΔE	0	1.0	0.4	4.4
	Nimag	0	1(10i)	1(<u>8</u> i)	2(30i, 20i)
MPW1PW91/	Е	-2177.24427	-2177.242391	-2177.243032	-2177.23544
LANL2DZ	ΔE	0	1.2	0.8	5.5
	Nimag	0	1(18i)	1(13 <u>i</u>)	2(33i, 26i)

Table S1. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of the four optimized structures of Os₄(CO)₁₆ without bridging carbonyl groups. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

	16-1 (<i>D</i> ₂)	16-2 (<i>D</i> _{2d})
B3LYP/SDD	1930(0) 1932(7) 1941(3)	1932(0) 1932(0) 1942(3)
	1941(6), 1948(275), 1949(251),	1942(3), 1948(266), 1948(266),
	1950(210), 1962(396), 1969(434),	1950(252), 1966(443), 1966(443),
	1971(0), 1985(1016), 1984(0),	1971(0), 1986(918), 1995(0),
	2001(2054) 2024(2562),	2003(2102) 2024(2470),
	2024(2431), 2075 (0)	2024(2470), 2077 (0)
BP86/SDD	1855(0), 1865(9), 1866(6),	1859(0), 1865(0), 1870(11),
	1869(8), 1878(216), 1880(125),	1870(11), 1878(242), 1878(242),
	1880(299), 1890(349), 1899(369),	1880(201), 1896(422), 1896(422),
	1900(0), 1910(1845), 1918(0),	1899(0), 1912(1477), 1921(0),
	1926(701) 1949(1897),	1930(972) 1951(1932),
	1950(2072), 1993 (0)	1951(1932), 1995 (0)
MPW1PW91/	1966(0), 1974(12), 1977(8),	1970(0), 1973(0), 1981(1),
SDD	1980(3), 1989(293), 1990(157),	1981(1), 1989(312), 1989(312),
	1991(362), 2000(314), 2011(369),	1990(265), 2007(445), 2007(445),
	2013(0), 2025(1631), 2034(0),	2013(0), 2027(1127), 2037(0),
	2038(1596) 2066(2478),	2045(1979) 2067(2512),
	2066(2714), 2118 (0)	2067(2512), 2120 (0)
B3LYP/	1935(0), 1937(10), 1946(2),	1936(0), 1937(0), 1947(9),
LANL2DZ	1947(10), 1954(304), 1955(271),	1947(9), 1954(284), 1954(284),
	1955(202), 1967(401), 1975(450),	1955(259), 1972(472), 1972(472),
	1977(0), 1991(1045), 1999(0),	1976(0), 1992(903), 2001(0),
	2006(2043) 2030(2538),	2010(2122) 2031(2420),
	2030(2387), 2082 (0)	2031(2420), 2083(0)
BP86/	1860(0), 1871(14), 1872(4),	1865(0), 1870(0), 1876(6),
LANL2DZ	1875(5), 1884(242), 1886(102),	1876(6), 1884(268), 1886(268),
	1887(325), 1895(338), 1905(0),	1886(207), 1902(447), 1902(447),
	1905(368), 1916(1947), 1924(0),	1905(0), 1919(1929), 1927(0),
	1931 (631) 1955(1878),	1937 (1025) 1957(1893),
	1956(2072), 1999 (0)	1957(1893), 2002(0)
MPW1PW91/	1970(0), 1979(17), 1982(5),	1976(0), 1978(0), 1987(0),
LANL2DZ	1985(2), 1995(339), 1995(133),	1987(0), 1995(341), 1995(341),
	1997(392), 2004(299), 2017(373),	1995(272), 2013(486), 2013(486),
	2019(0), 2032(1811), 2039(0),	2018(0), 2033(1117), 2043(0),
	2044 (1474) 2072(2463),	2052 (2020) 2074(2463),
	2072(2714), 2124 (0)	2074(2463), 2128 (0)
Expet. ^{a, b}	1993(sh), 2000(w), 2018.5(w), 201	36.5(s), 2054(m), 2075.5(vs)

Table S2. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for $Os_4(CO)_{16}$ (infrared intensities in parentheses are in km/mol).

Figure S2. The four optimized structures of $Os_4(CO)_{16}$ with bridging carbonyl groups.

		16-5 (<i>C</i> _{2<i>h</i>})	16-6 (D_{2d})	16-7 (D_{4h})	16-8 (D_{2h})
B3LYP/SDD	Е	-2176.33324	-2176.30919	-2176.30888	-2176.30780
	ΔE	6.9	22	22.3	22.9
	Nimag	0	0	1(17 <u>i</u>)	1(60i)
BP86/SDD	Е	-2177.01143	-2176.99626	-2176.99554	-2176.99322
	ΔE	4.8	14.3	14.8	16.2
	Nimag	0	0	1(20ji)	1(30ji)
MPW1PW91/	Е	-2175.89859	-2175.87978	-2175.87865	-2175.87800
SDD	ΔE	4.9	16.7	17.4	17.8
	Nimag	1(9i)	0	1(19i)	1(22i)
B3LYP/	Е	-2177.62600	-2177.59734	-2177.59700	-2177.59714
LANL2DZ	ΔE	9.5	27.5	27.7	27.6
	Nimag	0	1(44i)	(33i,15 <u>i</u>)	1(86ji)
BP86/	Е	-2178.20272	-2178.18389	-2178.18309	-2178.18140
LANL2DZ	ΔE	7	18.8	19.3	20.4
	Nimag	1(8i)	1(13 <u>i</u>)	1(17 <u>i</u>)	1(59i)
MPW1PW91/	Е	-2177.231611	-2177.20849	-2177.20724	-2177.20721
LANL2DZ	ΔΕ	8.0	22.5	23.2	23.3
	Nimag	1(12i)	1(20i)	1(17i)	1(57i)

Table S3. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of the four optimized Os₄(CO)₁₆ structures with bridging carbonyl groups. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

Table S4. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for the higher energy $Os_4(CO)_{16}$ isomers (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	MPW1PW91/SDD	MPW1PW91/LANL2DZ
16-3 (<i>D</i> ₄)	1955(0), 1978(92), 1978(6), 1978(6), 1980(0), 1990(268), 1990(268), 2003(258), 2003(258), 2015(0), 2022(3443), 2029(0), 2031(0) 2064(2733), 2064(2733), 2114(0)	1960(0), 1983(31), 1983(31), 1983(31), 1985(0), 1996(311), 1996(311), 2008(255), 2008(255), 2020(0), 2028(3490), 2034(0), 2037 (0) 2070(2715), 2070(2715), 2120(0)
16-4 (<i>D</i> _{4h})	1962(0), 1971(0), 1982(0), 1986(129), 1986(129), 1987(0), 1987(0), 2009(517), 2009(517), 2014(0), 2033(3374), 2035(0), 2038(0) 2068(2613), 2068(2613), 2120(0)	1969(0), 1977(0), 1988(0), 1991(147), 1991(147), 1994(0), 1994(0), 2016(564), 2016(564), 2020(0), 2041(3399), 2041(0), 2045(0) 2075(2567), 2075(2567), 2127(0)
16-5 (<i>C</i> _{2<i>h</i>})	1735(1161), 1748(0), 1966(0), 1975(141), 1985(166), 1989(0), 2012(875), 2016(0), 2018(0), 2036(779), 2037(0), 2042(3371), 2048(2040) 2057(0), 2089(2213), 2126(0)	1742(1150), 1755(0), 1973(0), 1981(131), 1990(176), 1994(0), 2019(937), 2023(0), 2023(0), 2042(729), 2043(0), 2048(3434), 2055 (2034) 2063(0), 2095(2273), 2133(0)
16-6 (<i>D</i> _{2d})	1753(0), 1782(1375), 1782(1375), 1808(0), 1979(0), 1993(54), 1993(54), 2016(1), 2029(338), 2029(338), 2039(3488), 2045(0), 2061(62) 2071(2284), 2071(2284), 2124(0)	1758(0), 1787(1344), 1787(1344), 1811(0), 1985(0), 1998(60), 1998(60), 2022(6), 2034(276), 2034(276), 2045(3491), 2051(0), 2068(87) 2078(2378), 2078(2378), 2131(0)
16-7 (<i>D</i> _{4h})	1751(0), 1781(1394), 1781(1394), 1807(0), 1974(0), 1997(0), 1997(0), 2015(0), 2029(379), 2029(379), 2039(3581), 2046(0), 2062 (0) 2073(2285), 2073(2285), 2125(0)	1756(0), 1786(1365), 1786(1365), 1809(0), 1980(0), 2003(0), 2003(0), 2019(0), 2035(338), 2035(338), 2046(3620), 2052(0), 2068(0) 2079(2359), 2079(2359), 2132(0)
16-8 (<i>D</i> _{2<i>h</i>})	1751(0) , 1764(1764) , 1775(1238) , 1802(0) , 1983(0), 1985(0), 2009(0), 2015(0), 2018(1151), 2031(102), 2041(3620), 2049(0), 2073 (0) 2078(1936), 2083(1993), 2128(0)	1758(0), 1771(1712), 1781(1219), 1807(0), 1989(0), 1990(1), 2017(0), 2021(0), 2024(1192), 2035(98), 2048(3680), 2054(0), 2080(0) 2086(1934), 2089(2004), 2135(0)

15-3 (C_s)

Figure S3. The five optimized structures of $Os_4(CO)_{15}$.

	15-1 ($C_{2\nu}$)	15-2 (C_{2v})	$15-3(C_s)$	15-4 ($C_{2\nu}$)	$15-5(C_s)$
MPW1P	W91/SDD				
Е	-2062.62207	-2062.62066	-2062.62355	-2062.62372	-2062.58802
ΔE	0	0.9	-0.9	-1.0	21.4
Nimag	0	0	0	0	1(57i)
MPW1P	W91/LANL2DZ				
Е	-2063.96144	-2063.96043	-2063.96032	-2063.95937	-2063.92194
ΔE	0	0.6	0.7	1.3	24.8
Nimag	0	0	0	1(23i)	2(58i,16i)

Table S5. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of the five optimized structures of Os₄(CO)₁₅. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

Table S6. The infrared (CO) vibrational frequencies (cm⁻¹) predicted for isomer **15-2** of Os₄(CO)₁₅ (infrared intensities in parentheses are in km/mol).

	15-2 (<i>C</i> _{2v})
B3LYP / SDD	1898(177), 1919(249), 1940(7), 1944(43), 1948(13), 1963(0), 1965(487), 1969(617), 1976(311), 1976(644), 1915(2538), 1994(3148), 2015(1456), 2030(2400), 2078 (2)
BP86/ SDD	1826(152), 1856(140), 1870(52), 1873(25), 1878(5), 1886(0), 1895(538), 1895(773), 1904(58), 1908(343), 1914(546), 1915(2538), 1942(1220), 1956(1934), 1997 (1)
MPW1PW91/ SDD	1934(207), 1959(238), 1981(8), 1983(39), 1988(3), 2003(0), 2005(325), 2010(793), 2018(1047), 2018(217), 2029(529), 2035(3221), 2057(1456), 2074(2338), 2121 (1)
B3LYP / LANL2DZ	1904(182), 1923(254), 1946(9), 1951(55), 1953(10), 1969(0), 1971(448), 1974(711), 1982(242), 1982(861), 1994(559), 2001(3158), 2022(1386), 2037(2335), 2084 (2)
BP86/ LANL2DZ	1833(156), 1861(144), 1877(62), 1879(23), 1883(1), 1893(0), 1901(815), 1902(518), 1910(37), 1914(315), 1919(738), 1922(2546), 1949(1174), 1963(1894), 2003 (2)
MPW1PW91/ LANL2DZ	1940(213), 1963(242), 1987(10), 1990(54), 1994(1), 2009(0), 2012(288), 2015(894), 2024(150), 2025(1140), 2034(545), 2042(3257), 2065(1396), 2081(2272), 2129 (2)
Expet. ^c	1939(m, br), 2002(sh), 2023(m), 2045(vs), 2074(m), 2086(s)

Table S7. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for the five optimized $Os_4(CO)_{15}$ isomers (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	MPW1PW91/SDD	MPW1PW91/LANL2DZ
	1792(551), 1968(387), 1971(0),	1797(523), 1974(387), 1978(0),
15-1	1972(0), 1975(291), 1996(73),	1978(0), 1981(310), 2002(102),
(C_{2v})	2008(358), 2010(0), 2020 (37)	2014(408), 2016(0), 2026 (68)
	2028(314), 2030(1112), 2034(3410),	2033(295), 2036(1010), 2040(3421),
	2043(1571), 2083(2431), 2117(81)	2049(1687), 2089(2390), 2124(83)
15-3	1828(607), 1944(500), 1960(28),	1846(547), 1964(40), 1968(373),
(C_s)	1980(133), 1987(353), 1991(330),	1987(180), 1991(414), 1995(308),
	1997(56), 2000(414), 2014(519),	2003(42), 2004(410), 2021(499),
	2026(93), 2034(3367), 2043(857),	2032(118), 2042(3358), 2047(866),
	2057(1104), 2073(2239), 2121 (54)	2063(1137), 2079(2217), 2128 (59)
	1824(1167), 1857(556), 1968(0),	1828(1157), 1859(552), 1974(0),
15-4	1969(15), 1989(146), 1994(290),	1975(13), 1995(131), 2000(262),
(C_{2n})	2001(53), 2006(516), 2009(692),	2007(49), 2012(528), 2015(722),
(\mathbf{U}_{2V})	2025(71), 2033(3538), 2048(1976),	2031(84), 2040(3594), 2055 (1991),
	2050(66), 2079(2026), 2121 (39)	2056 (52), 2086(2016), 2128(43)
	1700(618), 1763(665), 1847(653),	1708(628), 1771(642), 1863(573),
15-5	1894(139), 1985(0), 1994(7),	1905(127), 1989(0), 2001(6),
13-3	2000(441), 2008(237), 2009(304),	2005(425), 2013(294), 2014 (304)
(05)	2027(881), 2038(413), 2056 (2317)	2033(917), 2042(406), 2063(2368),
	2065(2374), 2069(2129), 2107(30)	2070(2419), 2076(2150), 2113(20)

Figure S4. The four lowest lying optimized structures of Os₄(CO)₁₄.

Table S8. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of the four lowest lying optimized structures of Os₄(CO)₁₄. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

		$14-1(C_2)$	$14-2(C_s)$	14-3 (C_{2v})	14-4 (D_{2d})
B3LYP/SDD	Е	-1949.69837	-1949.69823	-1949.69614	-1949.69587
	ΔE	0	0.09	1.3	1.5
	Nimag	0	0	1(16i)	2(16i,16i)
BP86/SDD	E	-1950.37018	-1950.37000	-1950.36816	-1950.36960
	ΔE	0	0.11	1.2	0.2
	Nimag	0	0	1(13i)	2(14i,14i)
MPW1PW91/	E	-1949.33904	-1949.33850	-1949.33771	-1949.3367
SDD	ΔE	0	0.3	0.8	1.5
	Nimag	0	1(15i)	2(10i,3i)	2(37i,37i)
B3LYP/	Е	-1950.99738	-1950.9971	-1950.99444	-1950.99451
LANL2DZ	ΔE	0	0.18	1.7	1.6
	Nimag	0	0	1(15i)	2(53i,53i)
BP86/ LANL2DZ	Е	-1951.56742 (99590)	-1951.56742	-1951.56474	-1951.56697
	ΔE	0	0.02	1.7	0.3
	Nimag	0	1(6i)	1(16i)	2(16i,16i)
MPW1PW91/	E	-1950.67800	-1950.67770	-1950.67592	-1950.67593
LANL2DZ	ΔE	0	0.2	1.3	1.3
	Nimag	0	1(12i)	1(13i)	2(38i,38i)

Table S9. The infrared (CO) vibrational frequencies (cm⁻¹) predicted for isomers **14-1** and **14-2** of Os₄(CO)₁₄ (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	14-1 (<i>C</i> ₂)	14-2 (C_s)
B3LYP/ SDD	1854(2), 1859(825), 1934(40), 1936(133), 1943(0), 1947(7), 1962(237), 1965(499), 1970(281), 1972(144), 1978(2283), 2008(2630), 2011(2699), 2054(9)	1812(445), 1882(429), 1934(92), 1937(121), 1946(2), 1949(95), 1959(212), 1968(412), 1971(153), 1972(157), 1996(2322), 2007(2761), 2011(2639), 2054(9)
BP86/ SDD	1760(1), 1764(687), 1868(87), 1869(195), 1876(13), 1876(7), 1886(155), 1896(313), 1901(253), 1901(47), 1922(1848), 1935(2292), 1935(2151), 1973(19)	1750(311), 1781(381), 1867(126), 1869(193), 1875(2), 1878(31), 1885(133), 1898(180), 1899(89), 1900(319), 1921(1783), 1933(2327), 1936(2199), 1972(14)
MPW1PW91/ SDD	1868(6), 1874(920), 1975(98), 1977(2), 1983(58), 1991(1), 2002(236), 2004(471), 2015(299), 2019(152), 2042(2558), 2053(2564), 2054(2744), 2100(28)	1848(456), 1906(491), 1975(72), 1979(134), 1988(39), 1989(1), 2000(198), 2008(382), 2014(153), 2014(222), 2039(2482), 2049(2847), 2054(2710), 2098(16)
B3LYP/ LANL2DZ	1875(22), 1879(750), 1938(78), 1940(231), 1946(14), 1953(2), 1968(104), 1971(566), 1975(266), 1977(254), 2003(2120), 2014(2716), 2017(2679), 2060(0)	1817(434), 1892(398), 1940(135), 1942(148), 1952(2), 1954(102), 1965(183), 1974(423), 1977(158), 1977(197), 2003(2279), 2014(2749), 2017(2659) 2060(4)
BP86/ LANL2DZ	1768(0) , 1772(669) , 1873(129), 1874(217), 1881(2), 1882(6), 1893(129), 1903(273), 1906(64), 1907(350), 1928(1778), 1941(2184), 1941(2297), 1979(12)	1754(310) , 1789(360) , 1873(156), 1875(210), 1881(1), 1884(20), 1892(122), 1905(151), 1905(87), 1907(404), 1928(1753), 1940(2319), 1942(2210), 1979(9)
MPW1PW91/ LANL2DZ Experimental	1931(2277), 1979(12) $1881(0), 1886(894), 1983(45), 1983(121), 1990(21), 1996(8), 2009(204), 2012(513), 2021(316), 2022(194), 2048(2411), 2058(2690), 2060(2802), 2106(13)$ $1938(uw br) = 2018(m) = 2058(c)$	1853(448), 1915(465), 1853(448), 1915(465), 1981(114), 1985(157), 1994(37), 1994(4), 2007(166), 2015(418), 2020(198), 2020(222), 2046(2425), 2057(2859), 2060(2760), 2105(8)

Table S10. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for isomers **14-3** and **14-4** of Os₄(CO)₁₄ (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	14-3 (<i>C</i> _{2v})	14-4 (<i>D</i> _{2d})
B3LYP/ SDD	1858(0), 1877(977), 1892(59), 1908(110), 1936(0), 1950(51), 1958(292), 1965(171), 1973(382), 1983(235), 2001(2684), 2015(2417), 2015(2222), 2058(43)	1832(0), 1834(959), 1937(262), 1937(262), 1944(0), 1948(0), 1955(0), 1970(72), 1970(72), 1972(302), 1992(2351), 2007(2922), 2007(2922), 2052(0)
BP86/ SDD	1775(0) , 1793(883) , 1811(65), 1826(122), 1872(0), 1878(134), 1889(130), 1892(220), 1904(216), 1914(132), 1924(2226), 1938(1948), 1947(1757), 1979(100)	1760(0), 1761(705), 1869(269), 1869(269), 1874(0), 1878(0), 1883(0), 1898(37), 1898(37), 1902(416), 1919(1707), 1933(2379), 1933(2379), 1971(0)
MPW1PW91/ SDD	1880(0), 1901(1155), 1916(86), 1936(156), 1981(0), 1992(102), 2004(223), 2006(161), 2018(353), 2030(243), 2044(2737), 2059(2425), 2063(2275), 2104(72)	1870(0) , 1871(997) , 1979(246), 1979(246), 1986(0), 1989(0), 1997(0), 2011(240), 2013(93), 2013(93), 2036(2481), 2049(3024), 2049(3024), 2096(0)
B3LYP/ LANL2DZ	1869(0) , 1887(897) , 1901(54), 1916(98), 1941(0), 1957(34), 1962(376), 1972(176), 1978(428), 1986(262), 2008(2649), 2019(2206), 2021(2433), 2064(29)	1836(0), 1837(928), 1943(299), 1943(299), 1949(0), 1954(0), 1960(0), 1977(66), 1977(66), 1979(310), 1998(2379), 2014(2896), 2014(2896), 2059(0)
BP86/ LANL2DZ	1785(0), 1802(840), 1819(63), 1834(119), 1878(0), 1885(117), 1897(134), 1897(268), 1910(270), 1918(147), 1932(2187), 1946(1963), 1951(1745), 1985(81)	1763(0), 1764(683), 1875(297), 1875(297), 1880(0), 1885(0), 1889(0), 1905(33), 1905(33), 1910(434), 1925(1718), 1940(2364), 1940(2364), 1978(0)
MPW1PW91/ LANL2DZ Experimental	1891(0) , 1911(1085) , 1926(84), 1944(153), 1987(0), 1999(80), 2008(299), 2013(161), 2024(427), 2033(269), 2052(2696), 2066(2272), 2066(2458), 2111(53) 1938(vw br) 2018(m) 2058(s)	1873(0), 1874(969), 1985(290), 1985(290), 1992(0), 1996(0), 2003(0), 2019(259), 2020(85), 2020(85), 2043(2511), 2057(3012), 2057(3012), 2104(0)

14-6 (C2)

14-7 (C_s)

14-8 (C_s)

14-10 (C_s)

Figure S5. Eight butterfly isomers of $Os_4(CO)_{14}$.

		14-5 (<i>C</i> ₁)	14-6 (<i>C</i> ₂)	$14-7(C_s)$	$14-8(C_s)$	14-9 (C_{2v})
MPW1PW91/	E	-1949.33226	-1949.29588	-1949.29685	-1949.29478	-1949.29445
SDD	ΔΕ	4.3	27.1	26.4	27.8	28.0
	Nimag	0	0	0	1(10i)	1(24i)
MPW1PW91/	E	-1950.66978	-1950.63554	-1950.63440	-1950.63582	-1950.63513
LANL2DZ	ΔΕ	5.2	26.6	27.4	26.5	26.9
	Nimag	0	0	0	1(13i)	1(28i)

Table S11. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of structures **14-5** to **14-9** of Os₄(CO)₁₄. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

Table S12. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of structures **14-10** to **14-12** of Os₄(CO)₁₄. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

		$14-10(C_s)$	$14-11(C_s)$	14-12 (C_{2v})
MPW1PW91/	Е	-1949.29371	-1949.28839	-1949.28069
SDD	ΔE	28.4	31.8	36.6
	Nimag	0	0	0
MPW1PW91/	E	-1950.62921	-1950.62420	-1950.61444
LANL2DZ	ΔE	30.6	33.8	39.9
	Nimag	0	0	0

Table S13. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for the higher energy $Os_4(CO)_{14}$ structures (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	MPW1PW91/SDD	MPW1PW91/LANL2DZ
14-5 (<i>C</i> ₁)	1787(306) , 1904(317) , 1984(220), 1987(42), 1989(188), 2003(228),	1798(296) , 1928(291) , 1991(202), 1992(29), 1996(165), 2009(146),
	2006(67), 2012(1097), 2018(339), 2027(2294), 2034(1175), 2060(975) 2073(2570) 2110(70)	2010(251), 2018(1030), 2025(433), 2033(2283), 2040(1218), 2066(974) 2078(2567) 2117(82)
14-6 (<i>C</i> ₂)	1943(11), 1949(259), 1968(675), 1971(61), 1994(415), 2001(223), 2006(393), 2008(374), 2026(494),	1949(14), 1954(271), 1973(674), 1977(62), 2001(402), 2007(147), 2012(339), 2015(357), 2031(452),
	2029(2933), 2033(2902), 2035(1), 2074(1953), 2119(55)	2035(3043), 2039(2995), 2041(3), 2081(1994), 2125(47)
14-7 (C _s)	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	1938(0), 1963(542), 1967(71), 1971(611), 1993(339), 1995(35), 1998(744), 2019(306), 2026(309), 2035(558), 2036(3148), 2050(1530), 2072(1064), 2122(82)
14-8 (<i>C_s</i>)	$\begin{array}{c} 2032(1311), & 2000(2077), & 2110(70) \\ 1928(61), & 1939(676), & 1946(131), \\ 1952(202), & 1983(325), & 1993(35), \\ 2000(15), & 2016(2), & 2022(2795), \\ & 2028(233), & 2030(2505), \\ 2036(568) & 2076(2972) & 2108(1) \\ \end{array}$	$\begin{array}{c} 2039(1339), 2072(1904), 2122(82) \\ 1936(60), 1947(665), 1953(141), \\ 1959(203), 1991(309), 2002(48), \\ 2007(7), 2022(5), 2029(2962), \\ 2034(264), 2037(2392), \\ 2042(607), 2083(2919), 2116(1) \end{array}$
14-9 (<i>C</i> _{2v})	1936(0), 1936(232), 1943(268), 1944(522), 1988(10), 1992(230), 1994(177), 2015(0), 2023(3227), 2026(2090), 2031(332), 2035(546), 2078(2789), 2108(1)	$\begin{array}{l} 1945(0), \ 1939(676), \ 1951(234), \\ 1952(538), \ 1998(210), \ 2002(31), \\ 2003(104), \ 2020(0), \ 2029(3322), \\ 2035(2349), \ 2036(367), \\ 2041(360), \ 2084(2733), \ 2115(0) \end{array}$
14-10 (<i>C_s</i>)	1805(468), 1945(237), 1956(165), 1977(159), 1980(1), 1984(62), 1989(629), 1995(1072), 2014(219), 2028(3522), 2043(46), 2053(1307), 2064(2093), 2115(3)	1841(462), 1957(158), 1978(541), 1981(214), 1987(190), 1988(9), 1990(312), 1998(1233), 2017(144), 2034(3489), 2046(40), 2059(1423), 2068(1982), 2121(1)
14-11 (<i>C_s</i>)	1807(505) , 1943(604), 1950(31), 1967(0), 1991(319), 1992(17), 1997(389), 1999(798), 2012(145), 2024(3676), 2037(525), 2047(1087), 2067(2363), 2114(19)	1824(505) , 1947(604), 1956(30), 1971(2), 1995(411), 1999(26), 2002(336), 2005(754), 2018(152), 2031(3706), 2044(483), 2052(1114), 2074(2313), 2121(27)
14-12 (<i>C</i> _{2v})	1807(1169), 1856(679), 1942(140), 1963(0), 1979(389), 1984(225), 1991(2), 2006(714), 2020(90), 2023(3261), 2038(13), 2045(1944), 2060(1703), 2115(157)	1810(1150), 1858(691), 1949(87), 1968(0), 1986(392), 1989(206), 1996(1), 2012(701), 2026(96), 2030(3350), 2045(1), 2051(2011), 2068(1647), 2121(159)

1.175

0 1.173

1.172

1.894

1.892

13-6 (C2v)

C

1.174

Figure S6. The seven optimized structures of $Os_4(CO)_{13}$.

Table S14. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of the four lowest lying optimized structures of Os₄(CO)₁₃. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

		13-1 (C_s)	13-2 (C _s)	13-3 (C ₂)	13-4 (C _s)
MPW1PW91/	Е	-1836.03282	-1836.03082	-1836.02950	-1836.02407
SDD	ΔE	0	1.3	2.1	5.5
	Nimag	0	1(9i)	1(37i)	1(19i)
MPW1PW91/	Е	-1837.37054	-1837.36841	-1837.36782	-1837.36118
LANL2DZ	$\triangle E$	0	1.3	1.7	5.9
	Nimag	0	1(11i)	1(29i)	1(26i)

Table S15. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of the three remaining optimized structures of Os₄(CO)₁₃. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

		13-5 (C_s)	13-6 (C _{2v})	13-7 (C _{2v})
MPW1PW91/	Е	-1836.01625	-1836.00767	-1835.98721
SDD	ΔE	10.4	15.8	28.6
	Nimag	1(27i)	3(36i,27i,17i)	1(26i)
MPW1PW91/	E	-1837.35707	-1837.34800	-1837.32437
LANL2DZ	ΔE	8.5	14.1	29
	Nimag	1(27i)	3(37i,27i,2i)	1(25i)

Table S16. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for the seven $Os_4(CO)_{13}$ optimized structures (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	MPW1PW91/SDD	MPW1PW91/LANL2DZ	
13-1 (C_s)	1826(742) , 1873(385) , 1975(269),	1834(712) , 1878(381) , 1982(260),	
	1977(229), 1979(9), 1997(242),	1983(253), 1987(2), 2004(278),	
	2006(20), 2013(625), 2018(614),	2014(4), 2020(601), 2024(565),	
	2043(2557), 2050(2525),	2049(2639), 2057(2537),	
12.0 (G)	2052(2022), 2094(19)	2059(2049), 2101(23)	
13-2 (Cs)	1832(854), 1879(367), 1968(307),	1842(813) , 1885(364) , 1973(313),	
	1969(181), 1986(0), 1999(230),	1976(186), 1992(0), 2005(269),	
	2004(50), 2015(269), 2017(563),	2011(36), 2021(184), 2024(576),	
	2039(2762), 2054(2391),	2044(2853), 2060(2389),	
	2058(2016), 2096(32)	2065(2038), 2103(39)	
$13-3(C_2)$	1832(751) , 1942(241), 1952(69),	1841(729), 1953(159), 1963(71),	
	1978(147), 1982(21), 1991(318),	1982(158), 1986(39), 1997(334),	
	1999(1336), 2008(64), 2015(682),	2003(1399), 2015(74), 2021(569),	
	2044(2377), 2050(1843),	2048(2506), 2056(2322),	
	2051(2328), 2092(1)	2058(1872), 2099(7)	
$13-4 (C_s)$	1767(469), 1880(595), 1972(24),	1767(423) , 1907(554) , 1977(21),	
	1985(43), 1989(0), 1990(392),	1993(302), 1993(1), 1999(161),	
	2002(264), 2018(841), 2019(565),	2010(225), 2021(547), 2023(817),	
	2045(2187), 2054(2370),	2051(2279), 2058(2500),	
10 5 (0)	2056(2179), 2095(54)	2061(2183), 2102(40)	
$13-5 (C_s)$	1948(190), 1969(52), 1971(122),	1957(152), 1974(56), 1978(98),	
	1977(249), 1979(15), 1994(352),	1984(311), 1985(15), 2001(327),	
	1995(651), 2007(61), 2008(428),	2002(678), 2014(73), 2015(425),	
	2038(2257), 2046(2822),	2044(2300), 2052(2491),	
10 (2047(2456), 2092(17)	2053(2777), 2099(16)	
13-6	1867(554) , 1964(90), 1969(0),	1873(538) , 1969(93), 1977(0),	
(C_{2v})	1977(378), 1991(33), 2000(715),	1984(419), 1997(67), 2007(648),	
	2001(26), 2003(740), 2003(0),	2010(29), 2010(0), 2011(731),	
	2038(2063), 2042(2604),	2045(2085), 2047(2677),	
10 8	2043(2960), 2089(41)	2051(2947), 2096(26)	
13-7	1793(220) , 1940(0), 1945(301),	1802(222) , 1946(0), 1951(319),	
(C_{2v})	1966(952), 1983(191), 1999(66),	1971(988), 1988(189), 1998(100),	
	2013(0), 2018(2993), 2026(1622),	2019(0), 2024(3018), 2035(1680),	
	2033(406), 2037(657),	2039(406), 2043(598),	
	2080(2801), 2110(0)	2087(2744), 2118(1)	
Expet	1998w, 2014m, 2018m(sh), 2052	2s, 2064s, 2077s	

2.814 2.794 C

Q 1.187 1.186

1.907

12-5 (C_{2v})

.620

2.485 2,530

	12-1 (<i>T</i>)	12-2 (<i>C</i> ₁)	12-3 (C_s)	12-4 (C_{2v})	12-5 (C_{2v})
MPW1PW91/SDD					
Е	-1722.71022	-1722.71086	-1722.70660	-1722.69677	-1722.69141
ΔE	0	-0.4	2.3	8.4	11.8
Nimag	0	0	0	0	3(43i, 29i, 21i)
MPW1PW91/LANL2DZ					
Е	-1724.05171	-1724.04774	-1724.03979	-1724.03699	-1724.02382
ΔE	0	2.5	6.9	9.2	17.5
Nimag	0	0	0	0	1(50i)

Table S17. The total energies (E, in Hartree) and relative energies (ΔE , in kcal/mol) of Os₄(CO)₁₂. The number of imaginary vibrational frequencies (Nimg) for each structure is also listed.

Table S18. The infrared (CO) vibrational frequencies (cm^{-1}) predicted for the $Os_4(CO)_{12}$ isomers (infrared intensities in parentheses are in km/mol, bridging (CO) frequencies are in **bold**).

	MPW1PW91/SDD	MPW1PW91/LANL2DZ
12-1 (<i>T</i>)	1965(124), 1965(124), 1965(124), 1990(654), 1990(654), 1990(654), 2000(0), 2000(0), 2040(2557), 2040(2557), 2040(2557), 2089(0)	1973(128), 1973(128), 1973(128), 1997(681), 1997(681), 1997(681), 2007(0), 2007(0), 2046(2595), 2046(2595), 2046(2595), 2096(0)
12-2 (<i>C</i> ₁)	1814(759) , 1860(499) , 1963(111), 1982(73), 1990(176), 1994(392), 2006(431), 2010(515), 2024(2834), 2045(2036), 2054(2038), 2090(121)	1822(728), 1868(496), 1971(129), 1990(28), 1996(163), 2001(466), 2012(410), 2016(497), 2030(2872), 2052(2080), 2059(2080), 2096(109)
12-3 (<i>C_s</i>)	1770(317), 1798(1096), 1958(7), 1963(914), 1977(98), 1995(53), 2008(613), 2008(1201), 2020(835), 2056(2338), 2056(2006), 2091(183)	1775(330) , 1804(1061) , 1969(2), 1970(894), 1984(104), 2001(29), 2013(623), 2015(1331), 2025(733), 2061(2376), 2061(2048), 2097(190)
12-4 (<i>C</i> _{2v})	$\begin{array}{c} 1937(0), & 1939(252), & 1942(469), \\ 1949(913), & 1989(5), & 2000(444), \\ 2005(0), & 2007(19), & 2019(1991), \\ 2020(3032), & 2068(2737), & 2092(30) \end{array}$	$\begin{array}{c} 1948(0), 1951(243), 1954(456), \\ 1959(825), 1995(36), 2007(697), \\ 2010(0), 2010(22), 2024(1842), \\ 2028(3050), 2072(2734), 2097(29) \end{array}$
12-5 (<i>C</i> _{2v})	1875(13), 1899(0), 1899(141), 1910(262), 1912(200), 1926(2087), 1997(749), 1999(0), 2016(192), 2024(2582), 2042(3847), 2073(117)	1913(61), 1914(0), 1920(100), 1924(206), 1936(992), 1955(1298), 2001(677), 2004(0), 2020(215), 2028(2691), 2047(3904), 2080(135)