Polyhedral Structures with an Odd Number of Vertices: Nine-Atom Clusters and Supramolecular Architectures.

Antonio Ruiz-Martínez, David Casanova, Santiago Alvarez

Electronic Supplementary Information

Contents

Table S1	Atomic Coordinates for Ideal 9-vertex Polyhedra
Table S2	Shape Measure of Some Transition Metal Clusters Relative to their Closest Ideal Shape (supplements the information of Table 2)
Table S3	Shape Measures for Clusters of Group 13 and 14 Elements (data corresponding to Figure 4).
Table S4	Shape measures of Supramolecular Assemblies with nine transition metal atoms relative to their closest ideal shape.
Table S5	Shape Measures and Path Deviation Functions for Supramolecular Assemblies forming 3x3 Grids (Figure 7).

Table S1. Atomic Coordinates for Ideal 9-vertex Polyhedra

SG-9	(square	grid)	
Tr1	-1.0	1.0	0.0
Tr2	0.0	1.0	0.0
Tr3	1.0	1.0	0.0
Tr4	-1.0	0.0	0.0
Tr5	0.0	0.0	0.0
Tr6	1.0	0.0	0.0
Tr7	-1.0	-1.0	0.0
Tr8	-1.0	-1.0	0.0
Tr9	1.0	-1.0	0.0

L-9 (linear chain)

Tr1	-4.0	0.0	0.0
Tr2	-3.0	0.0	0.0
Tr3	-2.0	0.0	0.0
Tr4	-1.0	0.0	0.0
Tr5	0.0	0.0	0.0
Tr6	1.0	0.0	0.0
Tr7	2.0	0.0	0.0
Tr8	3.0	0.0	0.0
Tr9	4.0	0.0	0.0

HG-9 (hexagonal grid)

	_		
Tr1	0.0	1.0	0.0
Tr2	-0.866	0.5	0.0
Tr3	0.866	0.5	0.0
Tr4	-1.732	0.0	0.0
Tr5	0.0	0.0	0.0
Tr6	1.732	0.0	0.0
Tr7	-0.866	-0.5	0.0
Tr8	0.866	-0.5	0.0
Tr9	0.0	-1.0	0.0

Refcode	M ₉	Shape	S(shape)
JUTFIN	Ni ₉	4:5	2.63
JUTDUX	Ni ₉	4:5	2.65
DOMMAT	Ni ₉	4:5	2.88
JUTFAF	Ni ₉	4:5	2.90
KAQTUR	Co ₉	cCU-8	0.00
VEDZOT	Pd ₉	cCU-8	0.00
SIWJUD	Pd ₉	cCU-8	0.00
LETWEM	Co ₉	cCU-8	0.07
LETWEM01	Co ₉	cCU-8	0.07
SAKTUT	Ag ₉	cCU-8	1.81
SIWJOX	Pd ₉	cCU-8	4.33
AGEVIR	Ni ₉	CP-9	0.21
GUNTUE	Ni ₆ Rh ₃	CP-9	0.25
CESCIM	Ag ₆ Fe ₃	CP-9	0.79
CAVKIT	Os ₉	CP-9	3.67
CAVKEP	Os ₉	CP-9	3.77
JAPWOM	Au ₈ Rh	cvIC-8	0.38
JAPWOM10	Au ₈ Rh	cvIC-8	0.38
SIYWIG	Au ₈ Pd	cvIC-8	0.48
ROQTOG	Au ₈ Pt	cvIC-8	0.50
JABMUU	Au ₉ Pt	cvIC-8	0.95
JOVGOQ	Re ₉	fOC-9	0.02
CAQPUF	Rh ₉	fOC-9	0.03
DOXKAC	Rh ₈ Pt	fOC-9	0.03
CEDSIO	Rh ₈ Ni	fOC-9	0.06
WETVUM	Ir ₉	fOC-9	0.07
VIPJIN	Ir ₉	fOC-9	0.08
FANBAX	Co ₉	fOC-9	0.13
PONGOO	Ru ₆ Pt	fOC-9	0.20
NAMDIO	Ru ₆ Pt ₃	fOC-9	0.23
PONGUU	Ru ₆ Pt ₃	fOC-9	0.23
NAMGUD	Ru ₆ Pt ₃	fOC-9	0.29
JUTBEF	Ru ₆ Pt ₃	fOC-9	0.30
JUTBEF10	Ru ₆ Pt ₃	fOC-9	0.30
JUTBIJ10	Ru ₆ Pt ₃	fOC-9	0.32
JUTBIJ	Ru ₆ Pt ₃	fOC-9	0.32

Table S2.	Shape Measure of So	ne Transition N	Metal Cluste	rs Relative	to their	Closest
Ideal Shap	e (supplements the inf	ormation of Ta	ble 2).			

			a a -
SSEPNI	Ni ₉	fOC-9	0.35
SSEPNI10	Ni ₉	fOC-9	0.36
POCLEY	Ru ₆ Pt ₃	fOC-9	0.36
HABKUQ	Ru ₆ Pt ₃	fOC-9	0.36
GISZOX	Co ₉	fOC-9	1.54
FALGUU	Ni ₉	fOC-9	4.29
DILRUL	Cu ₅ Fe ₄	HG-9	0.13
YEMXAP	Ag ₅ Fe ₄	HG-9	0.22
HENSOI	Ru ₉	JCCU-9	3.64
CURPAG	Ni ₉	JGSP-9	0.08
BEAMRH	Rh ₉	JGSP-9	0.09
XALNED	Ni ₉	L-9	0.01
XALNED	Ni ₉	L-9	0.01
CONTII	Co ₉	rCSAPR-9	0.33
JUXLUJ	Ru ₅ Co ₄	rTCTPR-9	4.41
BETROH	Au ₉	c-SAPR-8	0.74
CEGVIT	Au ₉	c-SAPR-8	0.75
VAPYIU	Au ₈ Pd	c-SAPR-8	1.26
PHTPTC	Pt ₉	TCL-9	1.59
VAZWUO	Au ₇ Co ₂	vTRPY-9	0.21
RAXPUC	Au ₇ Re ₂	vTRPY-9	0.95

Table S3. Shape Measures for Clusters of Group 13 and 14 Elements (data corresponding to Figure 4).

Refcode	M ₉	S(CSAPR)	S(TCTPR)	Dev.*
18 framework electron	ns:			
B ₉ Cl ₉	B ₉	1.54	1.04	0.54
OHILUM	Ga ₉	1.58	0.42	0.30
84956	B ₉	1.48	0.81	0.44
410698	B ₉	1.49	0.74	0.42
19 framework electron	ns:			
GOXWUL	B ₉	1.67	0.53	0.38
20 framework electron	ns:			
BIFWOC	TlSn ₈			
MDCCNB	B_7C_2	2.44	1.30	0.84
MDCCNB	B_7C_2	2.39	1.27	0.82
GOXXAS	B ₉	2.27	0.89	0.67
21 framework electron	ns:			
BEHMOR	Ge ₉	0.71	2.07	0.56
CAJBEU	Sn ₉	1.50	0.46	0.30
CUFSIF	Ge ₉	0.60	0.98	0.20
DALHIH	Sn ₉	0.33	2.19	0.40
HOQQUZ	Ge ₉	0.66	0.93	0.21
HOQQUZ	Ge ₉	0.37	1.56	0.27
HOQRAG	Ge ₉	0.58	1.19	0.26
HOQRAG	Ge ₉	0.34	2.03	0.37
NECPIV	Ge ₉	0.61	1.77	0.44
NECPOB	Ge ₉	0.80	0.97	0.28
NECPUH	Ge ₉	0.54	1.35	0.29
SOGGAW	Ge ₉	1.24	1.65	0.63
SOGGAW10	Geo	1.24	1.65	0.63
XAGDEO	Sno	0.84	0.65	0.17
XAGDEO01	Sno	1.29	0.42	0.22
YENBIC	Pbo	1.06	0.58	0.22
YENBIF10	Sno	0.97	0.62	0.21
YENBIF10	Sno	0.76	1.32	0.38
YENBOI	Geo	1.05	1.78	0.61
YENBOI01	Geo	1.05	1.78	0.61
ZIMTAO	Pbo	1.05	0.57	0.21
22 framework electron	9 IS:	1.00		
BEHLOQ	Geo	0.84	0.85	0.25
BEHLUW	Geo	0.88	0.58	0.16
	/			

BEHLUW	Geo	0.90	0.57	0.16
BEHLUW	Geo	0.79	0.67	0.16
BEHMAD	Geo	0.54	1.39	0.30
BEHMIL	Geo	1.37	1.39	0.60
26227	Bio	1.63	1.35	0.66
CRNASN01	Sno	0.37	2.41	0.47
CRYGER	Geo	0.80	0.96	0.28
CRYGER	Geo	0.42	2.28	0.47
Cs_4Ge_0	Geo	0.39	2.18	0.43
ENNASN10	Sno	1.30	2.11	0.77
EQULIL	Ge ₉	0.35	1.75	0.31
EQULOR	Ge ₉	0.48	1.55	0.32
EQULOR	Ge ₉	0.52	1.57	0.35
EQULUX	Ge ₉	0.50	1.28	0.25
EQULUX	Ge ₉	0.59	1.26	0.29
EQUMAE	Ge ₉	0.36	1.59	0.27
EQUMAE	Ge ₉	0.38	1.79	0.33
FAFPAE	Ge ₉	1.02	0.49	0.16
FAFPEI	Ge ₉	0.95	0.54	0.16
GUDJAQ	Ge ₉	0.46	1.67	0.34
K ₄ Sn ₉	Sn ₉	0.34	2.29	0.43
KAWXUC	Ge ₉	0.64	0.79	0.15
Li ₄ Sn ₉	Sn ₉	0.31	2.22	0.39
OHOHEY	Ge ₉	2.74	3.96	1.49
PUPGEM	Ge ₉	0.76	1.66	0.47
PUPGEM	Ge ₉	0.74	1.80	0.50
PUPGEM	Ge ₉	0.44	2.51	0.53
Rb ₄ Pb ₉	Pb ₉	0.59	2.63	0.63
SUYTIP	Ge ₉	0.67	1.47	0.38
VARPEK	Sn ₉	0.92	1.27	0.42
VODTAJ	Sn ₉	0.31	2.30	0.41
XAGPEB	Ge ₉	0.92	0.58	0.17
XAGPIF	Ge ₉	0.88	0.69	0.20
XAGPIF	Ge ₉	0.85	0.65	0.18
XAGPOL	Ge ₉	0.83	0.82	0.23
XAGQAY	Ge ₉	1.20	1.28	0.52
XAGQEC	Ge ₉	0.80	1.01	0.29
XAGQIG	Ge ₉	0.86	0.70	0.20
XAGQOM	Ge ₉	1.01	0.54	0.19
XAGQOM	Ge ₉	0.96	0.60	0.19

Ge ₉	1.12	0.71	0.30		
Ge ₉	1.19	0.71	0.31		
Ge ₉	1.22	0.72	0.33		
Pb ₉	0.37	2.35	0.46		
24 framework electrons:					
B_7C_2	9.63	7.22	2.99		
B ₉	13.19	14.28	4.16		
Bo	10.90	8.35	3.28		
	Ge_9 Ge_9 Ge_9 Pb_9 B_7C_2 B_9 B_9	$\begin{array}{ccc} Ge_9 & 1.12 \\ Ge_9 & 1.19 \\ Ge_9 & 1.22 \\ Pb_9 & 0.37 \\ \hline \textbf{ons:} \\ B_7C_2 & 9.63 \\ B_9 & 13.19 \\ B_9 & 10.90 \\ \end{array}$	$\begin{array}{cccccc} Ge_9 & 1.12 & 0.71 \\ Ge_9 & 1.19 & 0.71 \\ Ge_9 & 1.22 & 0.72 \\ Pb_9 & 0.37 & 2.35 \\ \hline \textbf{ons:} \\ B_7C_2 & 9.63 & 7.22 \\ B_9 & 13.19 & 14.28 \\ B_9 & 10.90 & 8.35 \\ \end{array}$		

* Value of the deviation function from the minimal interconversion path.

Refcode	M ₉	Shape	S(shape)
JEBSEO	Ni ₉	cCU-8	0.00
IBEZIY	Co ₉	cCU-8	0.82
JAXSOQ	Co ₉	cCU-8	0.92
ACOFON	Ni ₉	cCU-8	0.94
BEQYUS	Fe ₉	cCU-8	0.94
BEQYUS	Fe ₉	cCU-8	1.22
ACOFIH	Ni ₉	cCU-8	1.26
EVADOU	Sm ₉	cSAP-8	0.01
EVADOU	Sm ₉	cSAP-8	0.01
PECFEJ	Sm ₉	cSAP-8	0.01
RAKPID	Eu ₉	cSAP-8	0.01
HOVDAX	Y ₉	cSAP-8	0.02
CUNDOE10	Fe ₇ 2Mo	dT-9	0.15
CUNDOE20	Fe ₇ 2Mo	dT-9	0.15
TBBZFM10	Cu ₉	dT-9	0.22
BAESMC	Fe ₇ 2W	dT-9	0.22
JASCIP	Fe ₇ Re	dT-9	0.24
JASCIP10	Fe ₇ Re	dT-9	0.24
JETBAL	Fe ₇ Re	dT-9	0.24
BMETFM10	Fe ₇ 2Mo	dT-9	0.31
VOMKUD	Cu ₉	dT-9	0.35
KARFIT	Ni ₉	dT-9	0.99
KARFIT	Ni ₉	dT-9	1.06
ZOPBOV	Au ₈ Pd	dT-9	2.98
ZOPBOV10	Au ₈ Pd	dT-9	2.98
UGUTEV	Co ₉	dT-9	3.40
CATMAM	Cr ₈ Cd	EP-9	0.34
AHAYOX01	Ni ₉	EP-9	0.76
QOZPIE	Pd ₆ Zn ₃	fOC-9	0.38
GIWKIG	Cu ₉	fOC-9	4.12
JOZCAC	Cd ₉	HG-9	0.06
YESYIE	Ir ₈ Fe	HG-9	1.35
ECAQOP	Fe ₉	HG-9	2.00
WIHBAQ	Cu ₉	JCCU-9	0.07
ZUBKEM	W ₉	JTC-9	0.14
EGIQUG	Mn ₉	JTC-9	4.41

Table S4. Shape measures of Supramolecular Assemblies with nine transition metal atoms relative to their closest ideal shape.

DERPEV	Cu ₉	JTTP-9	0.43
GUCVAB	Ni ₉	rTCTPR-9	0.49
EBAKAU	Mn ₉	SG-9	0.47
MURMUH	Mn ₉	SG-9	0.77
EBAKIC	Mn ₉	SG-9	0.81
FAJJOQ	Mn ₉	SG-9	0.84
SURDIS	Co ₉	SG-9	1.29
MURNAO	Mn ₉	SG-9	1.51
EBAKUO	Mn ₉	SG-9	1.72
EBAKEY	Mn ₉	SG-9	2.02
WONSOH	Au ₆ Fe ₃	SG-9	2.09
EBAKOI	Mn ₉	SG-9	2.15
FAJKEH	Mn ₉	SG-9	2.28
FAJKEH01	Mn ₉	SG-9	2.45
EBAKIC	Mn ₉	SG-9	2.48
FAPGUZ	Cu ₉	SG-9	2.56
MURNES	Zn ₉	SG-9	2.65
KANBOQ	Mn ₉	SG-9	2.75
FAJKAD	Mn ₉	SG-9	2.81
AGOYEA	Cu ₉	SG-9	2.82
FAJJUW	Mn ₉	SG-9	3.05
EBALAV	Mn ₉	SG-9	3.97
ROJFUR	Co ₉	vTBPY-9	0.20

Refcode	S(SG-9)	S(HL-9)	Dev. (%)	
EBAKAU (c)	0.47	6.69	26	
MURMUH	0.77	5.29	22	
EBAKIC	0.81	5.67	74	
FAJJOQ	0.84	5.69	27	
SURDIS	1.29	7.83	52	
MURNAO	1.51	3.80	22	
EBAKUO	1.72	3.07	18	
EBAKEY	2.02	8.59	68	
WONSOH	2.09	8.54	69	
EBAKOI	2.15	8.44	69	
FAJKEH	2.28	8.08	68	
FAJKEH01	2.45	8.32	72	
EBAKIC	2.48	8.60	26	
YESYIE (b)	2.52	1.35	5	
FAPGUZ	2.56	7.74	69	
MURNES	2.65	9.15	80	
KANBOQ	2.75	9.14	81	
FAJKAD	2.81	9.26	82	
AGOYEA	2.82	7.27	69	
FAJJUW	3.05	9.54	87	
EBALAV	3.97	10.41	102	
YEMXAP (d)	5.25	0.22	6	
DILRUL (d)	5.49	0.13	4	
NEPFAP	5.62	11.77	125	
JOZCAC (a)	6.70	0.06	9	
ECAQOP	8.50	2.00	67	

Table S5. Shape Measures and Path Deviation Functions for Supramolecular Assemblies forming 3x3 Grids (Figure 7).