Supporting Informations

Electronic Absorption and EPR Spectra.

The complex $[Cu(5,6-dmp)_3]^{2+}$ 2 in 10% DMF/5 mM Tris-HCl/50 mM NaCl aqueous buffer solution shows a broad ligand field band around 680 nm (Table S1), which is in agreement with the square based geometry observed in its X-ray crystal structure. The phen (1) and dpq (3) analogues also show a single LF spectral feature around 712 and 728 nm (Table S1). The higher LF energy of 2 is expected of its stronger Cu-N bond (cf. above). The ligand-based bands are observed around 267 (1), 280 (2) and 296 nm (3). The analogues Zn(II) complexes also exhibit ligand-based bands around values closer to their Cu(II) analogues. The EPR spectra of 1 - 3 in frozen CH₃CN: acetone solutions are axial $[g_{\parallel} > g_{\perp} > 2.023, G = (g_{\parallel}-2)/(g_{\perp}-2) \approx 3.8]^{-1}$, which is in agreement with the absorption spectral data and the X-ray crystal structures of 1 and 2. The g_{\parallel} and A_{\parallel} values expected for a CuN₄ chromophore ¹ are respectively 2.200 and 200×10^{-4} cm⁻¹ and the g_{ll} value is expected to increase and the A_{ll} value to decrease on strong axial interaction by nitrogen. Thus the EPR spectral parameters of the present complexes ($g_{\parallel} 2.264 - 2.278$; A_{\parallel} 161 – 174 × 10⁻⁴ cm⁻¹) are consistent with the tetragonal distortion observed in the Xray structure and the value of the structural index $g_{\parallel}/A_{\parallel}$ quotient (1, 140; 2, 130; 3, 141) cm) is consistent with the planarity of CuN₄ basal plane of the complexes.

Reference

1. M. Palaniandavar, T. Pandian, M. Lakhsminarayanan and H. Manohar, J. C. S. Dalton Trans., 1995, 455.

Complex		λ_{max} in nm (ϵ ,	$M^{-1} cm^{-1}$)	EPR spectra ^d	
		Ligand field ^b	Ligand based ^c		
$[Cu(phen)_3]^{2+}$	1	712 (108)	267 (90150)	g∥	2.278
			294 sh	$A_{ }$	164
				g_{\perp}	2.073
$[Cu(5,6-dmp)_3]^{2+}$	2	680 (58)	280 (679840)	g_	2.264
			351 sh	$A_{ }$	174
				g_{\perp}	2.084
$\left[\operatorname{Cu}(\operatorname{dpq})_3\right]^{2+}$	3	728 (99)	254 (60858)	g_{\parallel}	2.270
			296 sh	$A_{ }$	161
				g_{\perp}	2.084
$[Zn(phen)_3]^{2+}$	4	—	267 (30500)		_
			230 (32300)		
$[Zn(5,6-dmp)_3]^{2+}$	5	_	278 (91260)		_
			298 (95460)		
$\left[Zn(dpq)_3\right]^{2+}$	6	_	255(55465)		_

Table S1.	Electronic	absorption	and EPR	spectral	properties	^a of C	Cu(II)	and Zn(II)	complexes
-----------	------------	------------	---------	----------	------------	--------------------------	--------	------------	-----------

^a In DMF - buffer solution. ^bConcentration, 5×10^{-3} mol.dm³. ^c Concentration, 2×10^{-5} mol.dm³. ^d Acetonitrile/acetone (4:1 V/V) glass at 77 K, A_{\parallel} in 10^{-4} cm⁻¹.

Complexes	R	$E_{\rm pa}\left({ m V} ight)$	$E_{\rm pc}$ (V)	$E_{1/2}$	$E_{1/2}(V)$		K_{2+}/K_{+}	
				CV	DPV ^b			
$\left[\operatorname{Cu}(\operatorname{phen})_3\right]^{2+} 1$	0	0.040	-0.084	0.022	0.021	124	1 17	
	3	0.038	-0.066	0.014	0.017	104	1.17	
$[Cu(5,6-dmp)_3]^{2+}$ 2	0	-0.004	-0.098	-0.051	-0.031	94	3 49	
	3	-0.014	-0.102	-0.063	-0.063	88	5.77	
$[Cu(dpq)_3]^{2+}$ 3	0	0.118	0.006	0.062	0.065	112	1 78	
	3	0.110	0.036	0.073	0.072	146	1.70	

Table S2. Electrochemical behaviour of ^a the copper(II) complexes on interaction with CT DNA at R = [DNA]/[Cu] = 3

^a Measured vs. sat. calomel electrode, using glassy carbon electrode scan rate, 50 mV⁻¹; supporting electrolyte 10% DMF : 5 mM Tris-HCl/50 mM NaCl; Complex concentration: 5 x 10⁻⁴ mol.dm³;
^b Differential pulse voltammetry (DPV), scan rate 1 mV s⁻¹, pulse height 50 mV.

		Form (%)		
Serial no	Reaction conditions	SC	NC	
1	DNA control	91.8	8.2	
2	$DNA + H_2A$	90.8	9.2	
3	DNA + 2 (10 μ M)	86.8	13.2	
4	DNA + 2 (20 μ M)	83.4	16.6	
5	DNA + 2 (30 μ M)	52.8	47.2	
6	$DNA + 2 (40 \ \mu M)$	45.8	54.2	
7	DNA + 2 (50 μ M)	43.0	57.0	

Table S3. Concentration dependent oxidative cleavage data of SC pUC19 DNA (40 μ M, in base pair) by complexes 2 in the presence of ascorbic acid.

Table S4. Concentration dependent oxidative cleavage data of SC pUC19 DNA (40 μ M, in base pair) by complexes **3** (30 μ M) in the presence of ascorbic acid.

		Form(%)		
Serial no	Reaction conditions	SC	NC	
1	DNA control	91.8	8.2	
2	$DNA + H_2A$	90.8	9.2	
3	DNA + 3 (10 μ M)	2.3	97.7	
4	DNA + 3 (20 μ M)	1.3	98.7	
5	DNA + 3 (30 μ M)	0.3	99.7	
6	DNA +3 (40 µM)	-	-	
7	DNA + 3 (50 μM)	-	-	

Figure S1. The effect of CT DNA on the absorption spectra of complexes of 1 - 6 (R = [DNA]/[complex] = 25).

Figure S2. Effect of addition of complex **2** and **5** on the CD intensity of the CT DNA at different complex concentrations in a 5mM Tris-HCl/ 50 mM NaCl buffer at pH = 7.1 at 25 °C

1/R = [Complex]/[DNA]

Figure S3A Circular Dichroism spectra of CT DNA in the absence (a) and presence of (b) $[Cu(phen)_3]^{2+}$ (1/R = 2); Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³

Figure S3B Circular Dichroism spectra of CT DNA in the absence (a) and presence of (b) $[Zn(phen)_3]^{2+} (1/R = 2)$; Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³

Figure S4. Circular Dichroism spectra of CT DNA, $d(AT)_{12}$, $d(GC)_{12}$ and $d(GTCGAC)_2$ in the absence (a) and presence of the *rac*-[Zn(5,6-dmp)₃]²⁺ (b) Conc of the olynucleotides = 2 x 10⁻⁵ mol.dm³; Cell length = 0.2 cm

Figure S5A. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Cu(5,6-dmp)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with EthBr in the presence of *rac*- $[Cu(5,6-dmp)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S5B. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Zn(5,6-dmp)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with EthBr in the presence of *rac*- $[Zn(5,6-dmp)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2×10^{-5} mol.dm³.

Figure S6A. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Cu(5,6-dmp)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with *rac*- $[Cu(phen)_3]^{2+}$ in the presence of *rac*- $[Cu(5,6-dmp)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S6B. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Cu(phen)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with *rac*- $[Cu(5,6-dmp)_3]^{2+}$ in the presence of *rac*- $[Cu(phen)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S7A. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Zn(5,6-dmp)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with *rac*- $[Zn(phen)_3]^{2+}$ in the presence of *rac*- $[Zn(5,6-dmp)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S7B. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Zn(phen)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with *rac*- $[Zn(5,6-dmp)_3]^{2+}$ in the presence of *rac*- $[Zn(phen)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S8A. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Cu(5,6-dmp)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with EDTA in the presence of *rac*- $[Cu(5,6-dmp)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S8B. Circular Dichroism spectra of CT DNA in the absence (a) and presence of *rac*- $[Zn(5,6-dmp)_3]^{2+}$ at 1/R = 2 (b) and of CT DNA incubated with EDTA in the presence of *rac*- $[Zn(5,6-dmp)_3]^{2+}$ at 1/R = 2 (c). Conc. of CT DNA = 2 x 10⁻⁵ mol.dm³.

Figure S9. Cleavage of supercoiled pUC 19 DNA (40 μ M) by the copper(II) complexes in 5% DMF : 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. Lane 1, DNA ; lane 2 + DNA + H₂A; lane 3, DNA + [Cu(phen)₂Cl]Cl + H₂A; lane 4, DNA + **1** + H₂A; lane 5, DNA + [Cu(5,6-dmp)₂Cl]Cl + H₂A; lane 6, DNA + **2** + H₂A; Complex concentration is 30 μ M for lanes 2-7. Forms I and II are supercoiled and nicked circular forms of DNA respectively.

Figure S10A. Cleavage of supercoiled pUC19 DNA (40 μ M) by complex **1** (10 – 30 μ M) in 10% DMF / 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. Lane 1, + DNA + H₂A; lane 2, DNA + **1** (10 μ M) + H₂A; lane 3, DNA + **1** (20 μ M) + H₂A; lane 4, DNA + **1** (30 μ M) + H₂A; lane 5, DNA + **1** (30 μ M) + H₂A + 2 μ L DMSO; Lane 6, DNA + **1** (30 μ M) + H₂A + Distamycin. Forms I and II are supercoiled and nicked circular forms of DNA respectively.

Figure S10B. Concentration dependent DNA (40 μ M) cleavage by complex **1** (10 – 50 μ M) in 10% DMF / 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. Lane 1, DNA ; lane 2, DNA + H₂A; lane 3, DNA + **1** (10 μ M) + H₂A; lane 4, DNA + **1** (20 μ M) + H₂A; lane 5, DNA + **1** (30 μ M) + H₂A; lane 6, DNA + **1** (40 μ M) + H₂A; lane 7, DNA + **1** (50 μ M) + H₂A; Forms I and II are supercoiled and nicked circular forms of DNA respectively

Figure S10C. Concentration dependent DNA (40 μ M) cleavage by complex 1 (2 – 10 μ M) in 10% DMF / 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. lane 1 + DNA + H₂A; lane 2, DNA + 1 (2 μ M) + H₂A; lane3, DNA + 1 (4 μ M) + H₂A; lane 4, DNA + 1 (6 μ M) + H₂A; lane 5, DNA + 1 (10 μ M) + H₂A; lane 7, DNA + 1 (8 μ M) + H₂A; Forms I and II are supercoiled and nicked circular forms of DNA respectively

Figure S11. Concentration dependent DNA (40 μ M) cleavage by the complex **2** (10 – 50 μ M)in 5% DMF : 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. Lane 1, DNA ; lane 2, DNA + H₂A; lane 3, DNA + **2** (10 μ M) + H₂A; lane 4, DNA + **2** (20 μ M) + H₂A; lane 5, DNA + **2** (30 μ M) + H₂A; lane 6, DNA + **2** (40 μ M) + H₂A; lane 7, DNA + **2** (50 μ M) + H₂A; ; lane 8, DNA + **2** (30 μ M) + H₂A + 2 μ L DMSO; Lane 9, DNA + **2** (30 μ M) + H₂A + Distamycin. Forms I and II are supercoiled and nicked circular forms of DNA respectively.

Figure S12. Concentration dependent DNA (40 μ M) cleavage by the complex **3** (2 – 10 μ M) in 10% DMF 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. Lane 1, DNA ; lane 2, DNA + H₂A; lane 3, DNA + **3** (2 μ M) + H₂A; lane 4, DNA + **3** (4 μ M) + H₂A; lane 5, DNA + **3** (6 μ M) + H₂A; lane 6, DNA + **3** (8 μ M) + H₂A; lane 7, DNA + **3** (10 μ M) + H₂A; Forms I and II are supercoiled and nicked circular forms of DNA respectively

Figure S13. Concentration dependent DNA (40 μ M) cleavage by the [Cu(dpq)₂Cl]²⁺ complex (2 – 10 μ M)in 5% DMF : 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of ascorbic acid (H₂A, 10 μ M) at 37 °C. Lane 1, DNA ; lane 2 , DNA + H₂A; lane 3, DNA + [Cu(dpq)₂Cl]²⁺ (2 μ M) + H₂A; lane 4, DNA + [Cu(dpq)₂Cl]²⁺ (4 μ M) + H₂A; lane 5, DNA + [Cu(dpq)₂Cl]²⁺ (6 μ M) + H₂A; lane 6, DNA + [Cu(dpq)₂Cl]²⁺ (8 μ M) + H₂A; lane 7, DNA + [Cu(dpq)₂Cl]²⁺ (10 μ M) + H₂A.

Figure S14. Cleavage of supercoiled pUC19 DNA (40 μ M) by 10 μ M complex (1 – 3) in 10% DMF / 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of H₂O₂ (200 μ M) at 37 °C. Lane 1, DNA ; lane 2, DNA + H₂O₂ ; lane 3, DNA + H₂O₂ + 1; lane 4, DNA + H₂O₂ + 3; lane 5, DNA + H₂O₂ + 2. Forms I and II are supercoiled and nicked circular forms of DNA respectively.

Figure S15. Cleavage of supercoiled pUC19 DNA (40 μ M) by the copper(II) complexes in a 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of H₂O₂ (200 μ M) at 37 °C. Lane 1, DNA + 2 μ L DMSO; lane 2, DNA + H₂O₂ + 2 μ L DMSO; lane 3, DNA + **1** + H₂O₂ + 2 μ L DMSO; lane 4, DNA + **3** + H₂O₂ + 2 μ L DMSO; lane 5, DNA + **2** + H₂O₂ + 2 μ L DMSO; Complex concentration is 10 μ M for lanes 3-5. Forms I, II and are supercoiled, nicked circular forms of DNA, respectively.

Figure S16. (A) Time dependent DNA (40 μ M) cleavage by the complex **2** (10 – 60 min) in 10% DMF / 5 mM Tris-HCl/50 mM NaCl at pH = 7.1 and 37 °C in the presence of H₂O₂ (200 μ M) at 37 °C. Lane 1, DNA + H₂O₂; lane 2, DNA + **2** (10 min) + H₂O₂; lane 3, DNA + **2** (20 min) + H₂O₂; lane 4, DNA + **2** (30 min) + H₂O₂; lane 5, DNA + **2** (40 min) + H₂O₂; lane 6, DNA + **4** (50 min) + H₂O₂; lane 7, DNA + **3** (60 min) + H₂O₂; Forms I and II are supercoiled and nicked circular forms of DNA respectively.

