Electronic Supplementary Information Ver. 2.02 (08-04-30)

Syntheses,molecularstructuresandpH-dependentmonomer-dimerequilibriumofDawsonα2-mono-titanium(IV)-substituted polyoxomatalates†

Shoko Yoshida, Hideyuki Murakami, Yoshitaka Sakai and Kenji

Nomiya^{*}

Department of Materials Science, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan. E-mail: <u>nomiya@kanagawa-u.ac.jp</u>

Contents:

Fig. S1 pH-Varied ³¹P NMR of **DK-1** in water. These spectra indicate that the species in solution are the mono-protonated dimer at pH 0.5, the dimer at pH 1.0 and 1.5, the mixture of monomer and dimer at pH 3.0 and the monomer at pH 7.0.

Fig. S2 pH-Varied ³¹P NMR of **DH-1** in water. These spectra indicate that the species in solution are the mono-protonated dimer at pH 0.5, the dimer at pH 1.1 - 3.0, and the monomer at pH 7.1.

Fig. S3 pH-Varied ³¹P NMR of **MK-1** in water These spectra indicate that the species in solution are the mono-protonated dimer at pH 0.5, the dimer at pH 1.0 - 3.0, and the monomer at pH 6.0.

Table S1Average bond distances (Å) and angles (o) [range] for the Dawson POM 1ain **DK-1**

Table S2Average bond distances (Å) and angles (o) [range] for the Dawson POM 1bin DH-1

Table S3Bond valence sum (BVS) calculations of W(1-17), Ti, P(1, 2) and O atomsfor the Dawson POM 1a in DK-1

Table S4Bond valence sum (BVS) calculations of W(1-17), Ti, P(1, 2) and O atomsfor the Dawson POM 1b in DH-1

Fig. S1

-10

-12

-14

Fig. S2

Fig. S3

Average bond distances (Å) and angles (o) [range] for the Dawson POM 1a Table S1

in **DK-1**

	Cap W(1, 2, 3)	Cap W (16,17)	Ti (1)
M-O(terminal)	1.707(16)[1.685(17)-1.728(16)]	1.718(16)[1.690(16)-1.746(16)]	1.803(7)
M-O(M cap)	1.927(17)[1.894(18)-1.959(17)]	1.895(16)[1.833(16)-1.975(16)]	1.941(18)[1.935(17)-1.947(18)]
M-O(W belt)	1.890(17)[1.820(17)-1.954(16)]	1.915(17)[1.859(17)-1.953(16)]	1.940(18)[1.923(17)-1.956(18)]
M-O(P)	2.376(16)[2.333(16)-2.407(16)]	2.365(17)[2.336(16)-2.394(17)]	2.315(16)
	Tetrahedral P(1)O ₄	Tetrahedral P(2)O ₄	
Р-О	1.543(17)[1.518(17)-1.569(17)]	1.542(17)[1.531(17)-1.565(17)]	
O-P-O angles	109.4(9)[106.5(9)-112.1(10)]	109.4(9)[105.9(9)-115.2(10)]	
	Belt W(4 – 9)	Belt W(10 - 15)	
W-O(terminal)	1.716(17)[1.670(16)-1.775(19)]	1.716(17)[1.677(16)-1.747(16)]	
W-O(M cap)	1.939(16)[1.865(16)-2.007(16)]	1.900(16)[1.828(17)-1.989(16)]	
W-O(W belt) ^a	1.921(17)[1.901(16)-1.940(17)]	1.925(17)[1.905(17)-1.954(16)]	
W-O(W belt) ^b	1.900(16)[1.868(16)-1.923(16)]	1.905(16)[1.887(17)-1.938(17)]	
W-O(W belt) ^c	1.871(16)[1.820(16)-1.929(16)]	1.933(16)[1.855(16)-2.009(17)]	
W-O(P)	2.363(16)[2.302(16)-2.398(16)]	2.353(16)[2.294(17)-2.391(17)]	
^a Edge sharing, be	tween octahedra.		

^b Corner sharing, between belt. ^c Corner sharing, between belts.

Table S2Average bond distances (Å) and angles (o) [range] for the Dawson POM 1b

in DH-1

For Dawson unit A						
	Cap W(1, 2, 3)	Cap W (16,17)	Ti (1)			
M-O(terminal)	1.694(9)[1.679(8)-1.707(9)]	1.699(8)[1.696(8)-1.701(8)]	1.803(8)			
M-O(M cap)	1.927(9)[1.901(9)-1.959(8)]	1.946(8)[1.894(8)-2.003(8)]	2.001(9)[1.984(9)-2.018(8)]			
M-O(W belt)	1.886(8)[1.857(9)-1.913(8)]	1.891(8)[1.853(8)-1.932(8)]	1.890(9)[1.885(8)-1.894(9)]			
M-O(P)	2.378(8)[2.361(8)-2.392(8)]	2.383(8)[2.377(8)-2.389(8)]	2.304(8)			
	Tetrahedral P(1A)O4	Tetrahedral P(2A)O4				
P-O	1.535(9)[1.514(9)-1.568(8)]	1.539(8)[1.526(8)-1.573(9)]				
O-P-O angles	109.4(5)[106.7(5)-112.0(5)]	109.5(5)[107.2(5)-111.7(5)]				
	Belt W(4 – 9)	Belt W(10 - 15)				
W-O(terminal)	1.711(9)[1.707(9)-1.717(9)]	1.711(9)[1.700(8)-1.724(9)]				
W-O(M cap)	1.938(8)[1.887(8)-1.980(8)]	1.900(8)[1.839(8)-1.970(8)]				
W-O(W belt)a	1.909(8)[1.890(8)-1.929(8)]	1.912(8)[1.890(8)-1.939(8)]				
W-O(W belt)b	1.896(8)[1.858(8)-1.921(8)]	1.893(8)[1.872(8)-1.909(8)]				
W-O(W belt)c	1.889(8)[1.824(8)-1.963(8)]	1.913(8)[1.840(8)-1.986(8)]				
W-O(P)	2.369(8)[2.352(8)-2.393(8)]	2.362(8)[2.350(8)-2.378(8)]				

^a Edge sharing, between octahedra.
^b Corner sharing, same belt.
^c Corner sharing, between belts.

For Dawson unit B						
	Cap W(1, 2, 3)	Cap W (16,17)	Ti (1)			
M-O(terminal)	1.715(8)[1.712(8)-1.717(8)]	1.720(9)[1.712(8)-1.727(9)]	1.791(9)			
M-O(M cap)	1.942(8)[1.889(8)-1.998(8)]	1.906(9)[1.846(8)-1.951(9)]	1.962(9)[1.955(9)-1.969(8)]			
M-O(W belt)	1.943(8)[1.834(8)-1.916(8)]	1.908(8)[1.873(9)-1.944(8)]	1.906(9)[1.889(8)-1.923(9)]			
M-O(P)	2.381(8)[2.374(8)-2.385(8)]	2.372(8)[2.362(8)-2.381(8)]	2.263(8)			
	Tetrahedral P(1B)O ₄	Tetrahedral P(2B)O ₄				
P-O	1.542(9)[1.522(9)-1.571(9)]	1.541(9)[1.513(8)-1.591(9)]				
O-P-O angles	109.4(5)[106.2(5)-112.4(5)]	109.5(5)[107.0(5)-111.9(5)]				
	Belt W(4 – 9)	Belt W(10 - 15)				
W-O(terminal)	1.705(9)[1.693(9)-1.714(8)]	1.713(9)[1.704(8)-1.726(9)]				
W-O(M cap)	1.943(8)[1.895(8)-1.994(8)]	1.896(8)[1.845(8)-1.947(9)]				
W-O(W belt) ^a	1.912(8)[1.890(8)-1.945(8)]	1.919(8)[1.901(8)-1.949(8)]				
W-O(W belt) ^b	1.897(8)[1.865(8)-1.916(8)]	1.896(8)[1.882(8)-1.909(8)]				
W-O(W belt) ^c	1.873(8)[1.832(8)-1.913(8)]	1.931(8)[1.872(8)-1.989(9)]				
W-O(P)	2.358(8)[2.319(8)-2.377(8)]	2.369(8)[2.348(8)-2.403(8)]				
^a Edge sharing, b ^b Corner sharing,	etween octahedra. same belt.					

^c Corner sharing, between belts.

O(1)	1.667	O(29)	2.150	O(57)	1.588	W(1)	5.899
O(2)	1.872	O(30)	2.080	O(58)	1.847	W(2)	6.369
O(3)	1.759	O(31)	2.137	O(59)	1.935	W(3)	6.250
O(4)	1.957	O(32)	2.078	O(60)	1.955	W(4)	6.209
O(5)	1.922	O(33)	2.094	O(61)	1.828	W(5)	5.994
O(6)	1.969	O(34)	2.097	O(1X)	2.063	W(6)	5.930
O(7)	2.026	O(35)	1.778			W(7)	6.214
O(8)	2.084	O(36)	1.703			W(8)	6.323
O(9)	1.943	O(37)	1.644			W(9)	6.290
O(10)	2.039	O(38)	1.583			W(10)	6.150
O(11)	2.046	O(39)	1.726			W(11)	5.973
O(12)	2.056	O(40)	1.913			W(12)	6.006
O(13)	2.011	O(41)	2.000			W(13)	5.955
O(14)	1.949	O(42)	2.029			W(14)	6.004
O(15)	1.468	O(43)	1.938			W(15)	6.346
O(16)	1.472	O(44)	2.117			W(16)	6.175
O(17)	1.923	O(45)	1.938			W(17)	6.195
O(18)	1.807	O(46)	2.055				
O(19)	1.774	O(47)	1.872			P(1)	4.889
O(20)	1.998	O(48)	1.874			P(2)	4.903
O(21)	2.109	O(49)	1.864				
O(22)	1.929	O(50)	1.993			Ti(1)	4.145
O(23)	2.126	O(51)	1.955				
O(24)	2.012	O(52)	1.892				
O(25)	2.058	O(53)	2.006				
O(26)	1.819	O(54)	2.018				
O(27)	1.844	O(55)	1.960				
O(28)	1.893	O(56)	2.007				

Table S3Bond valence sum (BVS) calculations of W(1-17), Ti, P(1, 2) and O atoms

for the Dawson POM 1a in DK-1

(O1A)	1.903	(O32A)	2.14	(O1B)	1.717	(O32B)	2.147
(O2A)	1.764	(O33A)	2.114	(O2B)	1.74	(O33B)	2.087
(O3A)	1.822	(O34A)	2.086	(O3B)	1.726	(O34B)	2.057
(O4A)	2.014	(O35A)	1.736	(O4B)	2.029	(O35B)	1.774
(O5A)	1.937	(O36A)	1.764	(O5B)	1.859	(O36B)	1.778
(O6A)	1.909	(O37A)	1.685	(O6B)	1.761	(O37B)	1.676
(O7A)	1.988	(O38A)	1.798	(O7B)	2.13	(O38B)	1.769
(O8A)	2.019	(O39A)	1.698	(O8B)	2.063	(O39B)	1.722
(O9A)	1.996	(O40A)	1.798	(O9B)	1.986	(O40B)	1.703
(O10A)	2.045	(O41A)	1.989	(O10B)	2.045	(O41B)	1.933
(O11A)	2.095	(O42A)	2.129	(O11B)	2.064	(O42B)	2.121
(O12A)	2.071	(O43A)	2.023	(O12B)	2.052	(O43B)	2.004
(O13A)	2.006	(O44A)	2.134	(O13B)	1.989	(O44B)	2.069
(O14A)	1.74	(O45A)	2.079	(O14B)	1.832	(O45B)	2.03
(O15A)	1.717	(O46A)	2.151	(O15B)	1.731	(O46B)	2.172
(O16A)	1.764	(O47A)	1.856	(O16B)	1.788	(O47B)	1.879
(O17A)	1.731	(O48A)	1.873	(O17B)	1.793	(O48B)	1.863
(O18A)	1.754	(O49A)	1.889	(O18B)	1.731	(O49B)	1.89
(O19A)	1.759	(O50A)	2.059	(O19B)	1.769	(O50B)	2.048
(O20A)	2.009	(O51A)	2.01	(O20B)	2.081	(O51B)	1.962
(O21A)	2.135	(O52A)	2.043	(O21B)	2.096	(O52B)	1.998
(O22A)	2.026	(O53A)	2.035	(O22B)	1.957	(O53B)	1.997
(O23A)	2.058	(O54A)	2.056	(O23B)	2.077	(O54B)	2.057
(O24A)	2.098	(O55A)	2.062	(O24B)	2.052	(O55B)	1.994
(O25A)	2.162	(O56A)	1.96	(O25B)	2.173	(O56B)	1.956
(O26A)	1.896	(O57A)	1.793	(O26B)	1.873	(O57B)	1.74
(O27A)	1.868	(O58A)	1.817	(O27B)	1.881	(O58B)	1.671
(O28A)	1.868	(O59A)	1.55	(O28B)	1.84	(O59B)	1.872
(O29A)	2.097	(O60A)	1.371	(O29B)	2.14	(O60B)	1.65
(O30A)	2.116	(O61A)	2.009	(O30B)	2.081	(O61B)	1.968
(O31A)	2.084			(O31B)	2.082	(O1X)	2.1

Table S4Bond valence sum (BVS) calculations of W(1-17), Ti, P(1, 2) and O atoms

for the Dawson POM 1b in DH-1

10

W(1A)	6.326	W(12A)	6.17	W(6B)	6.145	W(17B)	6.032	
W(2A)	6.173	W(13A)	6.278	W(7B)	6.26			
W(3A)	6.243	W(14A)	6.225	W(8B)	6.195	Ti(1A)	4.147	
W(4A)	6.22	W(15A)	6.287	W(9B)	6.344	Ti(1B)	4.276	
W(5A)	6.15	W(16A)	6.08	W(10B)	6.223			
W(6A)	6.187	W(17A)	6.122	W(11B)	6.133	P(1A)	5.004	
W(7A)	6.143	W(1B)	6.219	W(12B)	6.093	P(2A)	4.942	
W(8A)	6.077	W(2B)	6.112	W(13B)	6.117	P(1B)	4.902	
W(9A)	6.153	W(3B)	6.082	W(14B)	6.052	P(2B)	4.932	
W(10A)	6.179	W(4B)	6.183	W(15B)	6.1			
W(11A)	6.085	W(5B)	6.172	W(16B)	6.22			