A technetium intermediate specifically promotes deprotection of trifluoroacetyl HYNIC during radiolabelling under mild conditions

M. Bashir-Uddin Surfraz^{*a*}, Stefano C. G. Biagini^{**b*} and Philip J. Blower^{**c*}

Electronic Supplementary Information

1. Oligomerisation of HYNIC active ester – experimental and LCMS data

(a) Experimental: To a solution of HYNIC in DMSO (15 mg in 1 ml, 98 μ mol) was added dicyclohexylcarbodiimide (DCC,1 eq.). After stirring for 5 min, N-hydroxysuccinimide (NHS, 1 eq.) was added. The resulting solution was left stirring at room temperature for 3 hours. A 20 μ l aliquot of the reaction mixture was sampled and diluted with 380 μ l of a mixture of DMSO/water (1:1; v/v). 100 μ l of the resulting solution was injected for analysis by RP LC-MS using the following HPLC Method: mobile phase: linear gradient of increasing acetonitrile (ACN) in 0.05% aqueous TFA: 0-10 min 5% ACN, 5-40 min 10%-90% ACN, 40-45 min 90%-100% ACN, 40-45 min 100%-5% ACN; flow rate: 0.2 ml/min; detection: UV absorbance at 214 nm and 254 nm).

(b) Selected LCMS data up to m/z = 1000 showing formation and oligomerisation of 4. Other peaks were observed corresponding to HYNIC oligomers incorporating

dicyclohexylcarbodiimide adducts and N-hydroxysuccinimide ring opening reactions.

M+ ion m/z	Calc $(M+H)^+$	Solution species	Elution time/min	
251.1	251	4	14-19	
386.1	386	13, $n = 1$	15	
521.1	521	13, $n = 2$	15	
656.0	656	13, $n = 3$	15	
791.1	791	13, $n = 4$	15	
926.1	926	13, $n = 5$	15	
694.7	694	14, n = 4	16-17	
829.7	829	14, $n = 5$	16-17	

2. ESMS of products of labelling of 7 and 9 with Tc/tricine

In a screw top 2.5 ml polypropylene Corning vial, 3 μ g of HYNIC compound in water was incubated with 0.5 ml of a solution of *tris*(hydroxymethyl)methylglycine (tricine; 100 mg/ml in water), 0.5 ml of ^{99m}TcO₄⁻ solution (>200 MBq), and 10 μ l of stannous chloride dihydrate solution (3 mg/ml in ethanol) for 30 min at 97°C or 15 min at 20°C. To meet MS requirements, the labeling experiment was scaled up as follows: In a screw top 2.5 ml polypropylene corning vial, 14 μ g of HYNIC compound in water was incubated with 100 μ l of a solution of tricine (100mg/350 μ l in water), 50 μ l ⁹⁹TcO₄⁻ solution (1 x 10⁻⁸ moles), 5 μ l ^{99m}TcO₄⁻ solution (3 MBq), and 5 μ l stannous chloride dihydrate solution (6 mg/ml in ethanol) for 30 min at 97°C.

	m/z (intensity) and elution times					
HYNIC derivative	Method A (ES-)	Method	B (ES+)	Method C (ES+)		
	1 tricine Tc-complex	1 tricine Tc-complex	2 tricines Tc-complex	1 tricine Tc-complex	2 tricines Tc-complex	
7	-	776.0 (100%) 30.4, 30.7 min	955.0 (60%) 29.3, 29.6 min	776.0 (10%) 30.4, 30.7 min	955.0 (100%) 29.3, 29.6 min	
9	-	776.0 (100%) 30.4, 30.7 min	955.0 (60%) 29.3, 29.6 min	776.0 (10%) 30.4, 30.7 min	955.0 (100%) 29.3, 29.6 min	

LCMS methods as above.

Similar results were obtained at 97°C and at room temperature.

Method A: Peptide analytical mode, negative mode ionization with tube lens offset (skimmer) and capillary voltage set at -50 V and -16 V respectively; *Method B:* Peptide analytical mode, positive mode ionization with tube lens offset (skimmer) and capillary voltage set at +30 V and +19 V respectively; *Method C:* organic analytical profile mode, positive mode ionization with tube lens offset (skimmer) and capillary voltage set at 0 V and +15 V respectively;

3. Reaction of Fmoc-(trifluoroacetylHYNIC)-lysine 9 with stannous chloride, pertechnetate, and tricine; experimental methods and LCMS data

(a) Experimental:

<u>Sodium pertechnetate challenge:</u> To an aqueous solution of sodium pertechnetate [200 μ l of a 0.03 M solution, pH 5.0] was added a 0.05 M solution of Fmoc-(trifluoroacetylHYNIC)lysine **9** in DMSO (50 μ l, 2.5 μ mol) and the resulting solution was stirred at 20 °C for 2 h. A 40 μ l aliquot of the reaction mixture was sampled and diluted with 360 μ l of a mixture of DMSO/water (1:1; v/v). 25 μ l of the resulting solution was injected for analysis by RP LC-MS, using Method 2.

<u>Tricine challenge:</u> To an aqueous solution of tricine [250 μ l of a 0.19 M solution, pH 4.5] was added a 0.05 M solution of Fmoc-(trifluoroacetylHYNIC)-lysine **9** in DMSO (20 μ l, 1 μ mol) and the resulting solution was stirred at 20 °C for 2 h. A 20 μ l aliquot of the reaction mixture was sampled and diluted with 380 μ l of a mixture of DMSO/water (1:1; v/v). 25 μ l of the resulting solution was injected for analysis by RP LC-MS, using Method 1.

Stannous chloride challenge 1: To an aqueous solution of stannous chloride [30 μ l of a 0.1 M solution (pH 2), added to 100 μ l of phosphate buffer (pH 8), overall pH 7.0] was added a 0.05 M solution of Fmoc-(trifluoroacetylHYNIC)-lysine **9** in DMSO (20 μ l, 2.5 μ mol) and the resulting solution was stirred at 20 °C for 2 h. A 20 μ l aliquot of the reaction mixture was sampled and diluted with 480 μ l of a mixture of DMSO/water (1:1; v/v). 50 μ l of the resulting solution was injected for analysis by RP LC-MS, using Method 1.

Stannous chloride challenge 2: To an aqueous solution of stannous chloride [30 μ l of a 0.1 M solution (pH 2), added to 100 μ l of water] was added 30 μ l of a 1.6 M solution of tricine. The resulting solution was titrated with drops of an aqueous solution of 0.1 M NaOH until pH 6. Then a 0.05 M solution of Fmoc-(trifluoroacetylHYNIC)-lysine **9** in DMSO (20 μ l, 2.5 μ mol) was added and the resulting solution was stirred at 20 °C for 2 h. A 20 μ l aliquot of the reaction mixture was sampled and diluted with 480 μ l of a mixture of DMSO/water (1:1; v/v). 50 μ l of the resulting solution was injected for analysis by RP LC-MS, using Method 1. This procedure was then repeated using stannic chloride instead of stannous chloride.

"Labelling" of Fmoc-(trifluoroacetylHYNIC)-lysine 9 with 99 Tc

To a 3 mM aqueous solution of sodium pertechnetate (84 μ l, 0.25 μ mol) was added 15 μ l of stannous chloride dihydrate solution (6 mg/ml in ethanol) followed by 40 μ l of a solution of tricine (100mg/350 μ l in water). The solution obtained was incubated at 20 °C for 15 min then titrated with drops of a 0.1 M solution of NaOH till pH 5.5 before addition of a 0.05 M solution of Fmoc-(trifluoroacetylHYNIC)-lysine **8** in DMSO (50 μ l, 2.5 μ mol). The resulting solution was stirred at 20 °C for 15 min. A 60 μ l aliquot of the reaction mixture was sampled and diluted with 340 μ l of a mixture of DMSO/water (1:1; v/v). 100 μ l of the resulting solution was injected for analysis by RP LC-MS, using Method 1. This procedure was then repeated with an increased concentration of sodium pertechnetate (50 μ l of a 30 mM aqueous solution, 1.5 μ mol).

LCMS methods: Electrospray ionization mass spectra (ES-MS) were obtained with a Finnigan Mat LCQ ion trap mass spectrometer coupled to a Hewlett-Packard 1100 HPLC system for LCMS. Samples were analyzed by RP HPLC MS (ES+) using either a Phenomenex Polymer PRP-1 column (150 x 2 mm, 5 μm), using one of two gradient systems: Method 1: mobile phase: linear gradient of increasing acetonitrile (ACN) in 0.05% aqueous TFA: 0-10 min 5% ACN, 10-35 min 5%-90% ACN, 35-40 min 90%-100% ACN, 40-45 min 100%-5% ACN; flow rate: 0.2 ml/min; detection: UV absorbance at 214 nm and 254 nm; Method 2: mobile phase: linear gradient of increasing acetonitrile (ACN) in 0.05% aqueous TFA: 0-5 min 5% ACN, 5-30 min 5%-90% ACN, 30-40 min 90%-100% ACN, 40-45 min 100%-5% ACN; flow rate: 0.2 ml/min; detection: UV absorbance at 214 nm and 254 nm; ESMS analysis was performed using the following mass spectrometry methods: organic analytical profile, positive mode ionization with tube lens offset (skimmer) and capillary voltage set at 0 V and +15 V respectively

(b) Results

Number	Reagents	рН	Reaction time/min	% of 9 remaining	Product
1	Aqueous sodium pertechnetate	5.0	120	100	-
2	Aqueous tricine	4.5	120	100	-
3	Stannous chloride in phosphate buffer	7.0	120	100	-
4	Stannous chloride and tricine in water	6.0	120	100	-
5	Stannic chloride and tricine in water	6.0	120	100	-
6	0.1 eq. sodium pertechtenate, stannous chlorice and tricine in water (see LCMS report below)	5.5	15	~90	Tc- complexes 15, 16
7	0.6 eq. sodium pertechtenate, stannous chlorice and tricine in water	5.5	15	~45	Tc- complexes 15, 16

equivalents of technetium to give Tc-complexes 15 and 16.

4. LCMS of peptides Tc-99 labelling of 10 and 12 with tricine as co-ligand

Method: In a screw top 2.5 ml polypropylene Corning vial, 10 µl of a solution of a 1 mM solution of nanogastrin-HYNIC peptide (10 or 12) in water (1.5 x 10⁻⁸ moles) was incubated with 0.3 ml of a 0.5 M solution of *tris*(hydroxymethyl)methylglycine (tricine; 1.5×10^{-4} moles), 0.1 ml of a 2 mM solution of $Na^{99}TcO_4$ solution (2 x 10⁻⁸ moles), and 10 µl of stannous chloride dihydrate solution (6 mg/ml in ethanol) for 15 min at 20°C or 30 min at 97°C in a water bath. 100 µl of the resulting solution was injected for analysis by RP LC-MS. Electrospray ionization mass spectra (ES-MS) were obtained with a Finnigan Mat LCQ ion trap mass spectrometer coupled to a Hewlett-Packard 1100 HPLC system for LCMS. A Phenomenex Polymer PRP-1 column (150 x 2 mm, 5 µm) was used with the following HPLC method: mobile phase: linear gradient of increasing solvent B (ACN)/water; 70/30% v/v) in 0.05% aqueous TFA: 0-5 min 5% solvent B, 5-35 min 5%-90% solvent B, 35-40 min 90%-100% solvent B, 40-45 min 100%-5% solvent B; flow rate: 0.2 ml/min; detection: UV absorbance at 214 nm and 254 nm); ESMS analysis of technetium complexes was performed using the following mass spectrometry method: organic analytical profile mode, positive mode ionization with tube lens offset (skimmer) and capillary voltage set at 0 V and +15 V respectively.

Peptide	Main m/z	Elution time (min)	assignment
labelled	(ODS)		
10	1553.2	25.5 – 28.0 (all peaks give	[10+Tc+tricine-4H]+
	1575.2	similar ESMS)	[10+Tc+Tricine-5H+Na]+
12	777.3	25.5 - 28.0 (all peaks give	[10+Tc+tricine-3H]2+
	1553.2	similar ESMS)	[10+Tc+tricine-4H]+
	1575.3		[10+Tc+Tricine-5H+Na]+

LCMS report for labelling of unprotected peptide **10** for 30 min at 97°C. Similar results were obtained on incubation at room temperature for 15 min. Peaks A and B contain technetium. Peaks C and D gave ESMS with peaks corresponding to unlabelled peptide **10**. Peak C gave M^+ - 15 as the base peak, and peak D gave M^+ - (2x15) as the base peak. These correspond respectively to loss of NH and 2 x NH from the unprotected HYNIC group during incubation. These peaks are not observed when **12** is labelled.

The peak at 1095.2 in A and B is attributed to a peptide fragment formed during labelling or during ionisation in the mass spectrometer. Such fragment peaks do not occur when protected peptide **12** is treated similarly (see p. 8)