ELECTRONIC SUPPLEMENTARY INFORMATION

BINDING OF Ni²⁺ AND Cu²⁺ IONS TO PEPTIDES WITH CYS-HIS MOTIF

Kinga Kulon,¹ Daniela Valensin,² Wojciech Kamysz,³ Rafał Nadolny,³ Elena Gaggelli,² Gianni Valensin² and Henryk Kozłowski^{1*}

¹Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland ²Department of Chemistry, University of Siena via Aldo Moro, 53-100 Siena (Italy) ³Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland

*Corresponding author: e-mail: <u>henrykoz@wchuwr.pl</u>; phone and fax: +4871-375-7251

	$\log \beta$	logK	UV-Vis		CD	
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta \epsilon/M^{-1}cm^{-1}$
$\begin{array}{l} HL\\ H_2L\\ H_3L\\ H_4L \end{array}$	10.60(1) 19.32(1) 25.60(1) 29.15(1)	$\begin{array}{l} logK_{NH2-Lys} \ = \ 10.60 \\ logK_{Cys} \ = \ 8.72 \\ logK_{Nim} \ = \ 6.28 \\ logK_{Asp} \ = \ 3.55 \end{array}$				
NiHL	15.17(6)		minor			
NiL	8.60(1)	6.57	494 374 286	469 1528 2867	569 487 381 330 308 _{sh} 282 237 219	-0.598 +3.699 -2.917 +0.509 -2.192 -4.235 -3.172 -4.559
NiH.1L	-1.36(3)	9.96	495 374 286	455 1474 2869	542 482 382 337 305 sh 285 246 223	-1.473 +4.654 -3.740 +0.553 -9.205 -11.786 -4.391 +12.217
NiH.2L	-11.99(2)	10.64	493 374 285	406 1257 2867	544 484 381 338 305 sh 285 246 222	-0.968 +3.536 -3.012 +0.213 -6.690 -8.818 -4.643 +9.707

Table 1S. Potentiometric and spectroscopic data for proton and Ni^{2+} complexes of **Ac-nW** Ac-GGKPDLRPCHP-NH₂. Metal to ligand ratio = 1:1.1; $[Ni^{2+}] = 0.001$ M.

	$\log \beta$	logK	UV-Vis		CD	
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta\epsilon/M^{-1}cm^{-1}$
HL H ₂ L H ₃ L H ₄ L	11.30(2) 21.14(2) 29.85(3) 36.07(3)	$\begin{array}{l} logK_{\rm NH2-Lys} = 11.30 \\ logK_{\rm O-Tyr} = 9.84 \\ logK_{\rm Cys} = 8.70 \\ logK_{\rm Nim} = 6.22 \end{array}$				
NiHL	19.28(1)		500 374 282	455 1277 2693	547 486 380 340 303 284 226	-1.904 +4.801 -3.163 +0.837 -11.734 -12.751 +4.858
NiL	9.09(4)	10.19	500 376 282	455 1189 2690	547 486 382 338 304 281 234	-2.011 +4.340 -2.397 +0.926 -8.301 -9.244 +3.239
NiH.1L	-1.59(4)	10.69	500 377 280	386 958 2690	556 494 435 375 _{sh} 308 293 271 251	-0,727 +2,402 -1,450 -1,105 -1,183 +0,884 -2,077 +1,823

Table 2S. Potentiometric and spectroscopic data for proton and Ni^{2+} complexes of Ac-cW Ac-PCHYIPRPKPR-NH₂. Metal to ligand ratio = 1:1; $[Ni^{2+}] = 0.001$ M.

	$\log \beta$	logK	UV-Vis		CD	
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta \epsilon/M^{-1}cm^{-1}$
HL H ₂ L H ₃ L	9.65(1) 16.33(1) 22.16(1)	$\begin{array}{rcl} logK_{O-Tyr} &=& 9.65\\ logK_{Nim} &=& 6.68\\ logK_{Nim} &=& 5.83 \end{array}$				
NiH ₂ L	19.01(9)		minor			
NiHL	12.75(4)	6.26	minor			
NiL	4.13(6)	8.62	minor			
NiH_1L	-4.25(2)	8.38	-		788 277 _{sh} 233	+0.071 -0.467 -4.829
NiH_2L	-14.31(2)	10.06	-		526 293 261 226	-0.264 -0.533 +0.640 -8.373

Table 3S. Potentiometric and spectroscopic data for proton and Ni^{2+} complexes of Ac-sW Ac-PCHPPCHYIPR-NH₂. Metal to ligand ratio = 1:1; $[Ni^{2+}] = 0.001$ M.

	log β	logK	UV-Vis		CD	
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta \epsilon/M^{-1}cm^{-1}$
HL H ₂ L H ₃ L H ₄ L H ₅ L	10.58(1) 19.37(1) 26.97(1) 33.16(1) 36.85(1)	$\begin{array}{l} logK_{\rm NH2-Lys} = 10.58 \\ logK_{\rm Cys} = 8.78 \\ logK_{\rm NH2} = 7.60 \\ logK_{\rm Nim} = 6.18 \\ logK_{\rm Asp} = 3.70 \end{array}$				
NiH ₃ L	29.83(2)		398 _{sh} 340 _{sh} 291 _{sh}	78 198 451	-	-
NiHL	16.42(1)	6.70 (2H ⁺)	$\begin{array}{c} 496 \\ 374_{sh} \\ 336_{sh} \\ 285_{sh} \end{array}$	349 1200 1783 2681	556 485 382 305 sh 282 226 sh 215	-0.058 +0.264 -0.207 -0.327 -0.535 -7.529 -13.784
NiL	8.14(1)	8.28	495 374 _{sh} 284 _{sh}	371 1174 2767	547 484 384 338 305 sh 283 225 sh 215	-0.121 +0.356 -0.327 +0.072 -0.770 -1.079 -6.255 -15.531
NiH_1L	-1.61(1)	9.75	493 374 _{sh} 284 _{sh}	351 1065 2780	543 486 427 sh 386 338 306 sh 284 234 215	-0.104 +0.228 -0.225 -0.337 +0.072 -0.663 -1.284 -3.927 -5.612
NiH.2L	-12.33(1)	10.72	$\begin{array}{c} 477\\ 374_{sh}\\ 284_{sh} \end{array}$	286 703 2783	507 437 387 _{sh} 233 217	+0.153 -0.533 -0.242 -3.912 -7.666

Table 4S. Potentiometric and spectroscopic data for proton and Ni^{2+} complexes of **nW** GKPDLRPCHP-NH₂. Metal to ligand ratio = 1:1.1; [Ni²⁺] = 0.001 M.

	$\log \beta$	logK	UV-Vis		CD	
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta \epsilon/M^{-1}$
$\begin{array}{l} \mathrm{HL} \\ \mathrm{H_{2}L} \\ \mathrm{H_{3}L} \\ \mathrm{H_{4}L} \\ \mathrm{H_{5}L} \end{array}$	11.47(2) 21.40(1) 30.46(2) 38.40(2) 44.49(2)	$\begin{array}{l} logK_{\rm NH2-Lys} = 11.47 \\ logK_{\rm O-Tyr} = 9.93 \\ logK_{\rm Cys} = 9.06 \\ logK_{\rm NH} = 7.94 \\ logK_{\rm Nim} = 6.09 \end{array}$				
NiHL	24.67(4)		457 331	445 2229	495 424 338 272 233 _{sh}	-0.381 +0.669 +0.433 -1.788 -7.159
NiL	18.23(6)	6.44	454 334 _{sh}	421 1309	506 428 337 276 235 _{sh}	-1.193 +1.660 +3.830 -9.506 -8.613

Table 5S. Potentiometric and spectroscopic data for proton and Ni²⁺ complexes of **cW** PCHYIPRPKPR-NH₂. Metal to ligand ratio = 1:3; $[Ni^{2+}] = 0.0003 \text{ M}.$

	log β	logK	UV-Vi	UV-Vis		
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta \epsilon/M^{-1}cm^{-1}$
$\begin{array}{l} HL\\ H_2L\\ H_3L\\ H_4L \end{array}$	9.75(1) 18.12(1) 24.71(1) 30.52(1)	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
NiH.1L	0.48(3)		424	202	477 415 289 _{sh} 257 234	-2.510 +2.135 +1.973 +5.620 -9.617
NiH.2L	-8.62(7)	9.10	421 284 _{sh}	241 5207	478 416 310 259 233	-2.593 +2.296 +0.483 +6.753 -14 732
NiH_3L	-19.47(9)	10.85	minor			1 T./ <i>J</i> 2

Table 6S. Potentiometric and spectroscopic data for proton and Ni^{2+} complexes of **sW** PCHPPCHYIPR-NH₂. Metal to ligand ratio = 1:3; $[Ni^{2+}] = 0.0003$ M.

	Нα	Ηβ	Ηγ	Others
Gly-1	3.59			
Gly-2	3.98			
I ve_3	1 65	1.85	1 47	Ηδ 1.71
Ly5-5	4.05	1.05	1.47	Ηε 3.00
Pro-4 [*]	4.41	2.27-2.02	1.87	Нб 3.82-3.65
Asp-5	4.57	2.71-2.57		
Leu-6	4.35	1.61	1.61	Ηδ 0.87
Arg-7	4.61	1.84-1.76	1.69	Нб 3.21
Pro-8 [*]	4.41	2.27-2.02	1.87	Нδ 3.82-3.65
Cys-9	4.38	2.86		
Hig 10	4.00	2.07		Ηδ 7.70
1115-10	4.90	5.07		Ηε 7.00
Pro-11	4.38	2.26	1.94	Нδ 3.77-3.46

Table 7S. ¹ H Chemical shift of nW fragments 2.0 mM in D_2O at p	H 7.8 and 298 K
Tuble 75: If enclinear shift of hit haginenes 2.0 milling by 20 at p	11 7.0 and 270 m

Table 8S. ¹ H Ch	Table 8S . ¹ H Chemical shift of Ac-nW fragments 2.0 mM in D ₂ O at pH 8.5 and 298 K							
	Ηα	Нβ	Ηγ	Others				
Gly-1	3.93							
Gly-2	3.93							
T O	4.65	1.05	1.47	Ηδ 1.71				
Lys-3	4.65	1.85	1.4/	Ηε 3.00				
Pro-4	4.41	2.27-2.02	1.87	Нδ 3.82-3.65				
Asp-5	4.57	2.71-2.57						
Leu-6	4.35	1.61	1.61	Ηδ 0.87				
Arg-7	4.61	1.84-1.76	1.69	Нб 3.21				
Pro-8	4.41	2.27-2.02	1.87	Нδ 3.82-3.65				
Cys-9	4.38	2.86						
				Ηδ 7.70				
H1s-10	4.90	3.07		Ηε 7.00				
Pro-11	4.38	2.26	1.94	Нδ 3.77-3.46				
[*] The two proline w	ere not distingu	ishable.						

,	
Cable 88 ¹ H Chamical shift of	Ac nW fragments 2.0 mM in D ₂ O at nH 8.5 and 208 K
	Ac-inv magnetics 2.0 million in D_2O at p11 0.5 and 290 K

able 55. If Chemical shift of the magnetics 2.0 million in D ₂ O at pH 8.5 and 258 K							
	Ηα	Ηβ	Ηγ	Others			
Pro-12	4.10	2.28	1.89	Ηδ 3.18			
Cys-13	4.27	2.80					
	4.62	2.00		Ηδ 6.85			
HIS-14	4.02	5.00		Нε 7.65			
TT 15	4.50	2.07		Ηδ 7.06			
1 yr-15	4.52	2.97		Ηε 6.80			
Ile-16	4.35	1.75	1.43-1.10	Ηδ 0.89			
Pro-17	4.31	2.28	1.97	Нδ 3.65			
Arg-18	4.60	1.76	1.76	Ηδ 3.21			
Pro-19 [*]	4.42	2.30-1.90	2.00	Нδ 3.83–3.63			
1 20	4.50	1.72	1.50	Ηδ 1.73			
Lys-20	4.58	1./3	1.53	Нε 3.03			
Pro-21 [*]	4.42	2.30-1.90	2.00	Нδ 3.83–3.63			
Arg-22	4.26	1.86	1.71	Нδ 3.21			

Table 9S	¹ H Chemical	shift of c	W fragmen	its 2.0 mM in	n D ₂ O at	nH 8 5	and 298 K
1 4010 751	II Chemieur		" inaginen		$D_2 O u$	p11 0.5	und 200 m

able 10S. H Chemical shift of Ac-cW fragments 2.0 mM in D ₂ O at pH 8.4 and 298 K						
	Нα	Нβ	Нγ	Others		
Pro-12	4.35	2.27	1.95	Нδ 3.64		
Cys-13	4.29	2.80				
II. 14		2.00		Ηδ 6.87		
H1S-14	4.62	3.00		Ηε 7.65		
T 15		2.07		Ηδ 7.06		
Tyr-15	4.51	2.97		Нε 6.80		
Ile-16	4.35	1.76	1.45-1.10	Ηδ 0.87		
Pro-17	4.31	2.28	1.97	Нб 3.66		
Arg-18	4.60	1.76	1.76	Нб 3.21		
Pro-19 [*]	4.42	2.30-1.90	2.00	Нδ 3.82–3.62		
	4.58 1.73			Нδ 1.73		
Lys-20		1.73	1.53	Нε 3.03		
Pro-21 [*]	4.42	2.30-1.90	2.00	Нδ 3.82–3.62		
Arg-22	4.26	1.86	1.71	Нб 3.21		

Table 115. H Chemical shift of sw fragments 2.0 mM in D_2O at pH 8.5 and 298 K							
	Ηα	Нβ	Нγ	Others			
Pro-8	3.99	2.21	1.85	Ηδ 3.14			
Cys-9	4.63	3.12					
H. 10	4.04	2 10 2 02		Ηδ 7.00			
H1S-10	4.94	3.10-2.92		Ηε 7.70			
Pro-11	4.40	2.30-1.81	2.10-1.99	Ηδ 4.02–3.49			
Pro-12	4.48	2.21-1.84	2.10-1.93	Ηδ 3.60-3.50			
Cys-13	4.43	3.24-3.14					
TT: 14		2.00	Нδ 6.89				
H1S-14	4.64	3.00		Нε 7.66			
		• • • •		Ηδ 7.04			
Tyr-15	4.54	2.94		Ηε 6.89			
Ile-16	4.35	1.72	1.42-1.06	Ηδ 0.86			
Pro-17	4.30	2.31	2.02-1.92	Ηδ 3.63			
Arg-18	4.28	1.85	1.77-1.69	Ηδ 3.21			

Table 11S.¹H Chemical shift of sW fragments 2.0 mM in D₂O at pH 8.5 and 298 K

Table 125. H Chemical shift of Ac-sW fragments 2.0 mM in D_2O at pH 8.5 and 298 K							
Нα		Нγ	Others				
4.22	2.14-1.71	1.91	Ηδ 3.58				
4.61	3.15						
4.02	2 10 2 02		Ηδ 7.00				
4.93	3.10-2.93		Ηε 7.71				
4.42	2.30-1.81	2.10-1.99	Ηδ 4.03-3.51				
4.47	2.21-1.84	2.10-1.93	Нб 3.60-3.50				
4.44	3.25-3.13						
4 (5	Нб 6	Нδ 6.89					
4.05	2.99		Нε 7.68				
4.5.4	2.04		Ηδ 7.04				
5 4.54	2.94		Нε 6.79				
4.34	1.72	1.41-1.06	Ηδ 0.86				
4.28	2.30	2.02-1.92	Нδ 3.65				
4.28	1.85	1.77-1.69	Ηδ 3.21				
	$ H\alpha H\alpha 4.22 4.61 4.93 4.42 4.47 4.44 4.65 4.54 4.34 4.28 4.28 4.28 4.28 $	Hemical shift ofAc-sw fragingH α H β 4.222.14-1.714.613.154.933.10-2.934.422.30-1.814.472.21-1.844.443.25-3.134.652.994.542.944.341.724.282.304.281.85	Hermital shift of Ac-sw fragments 2.0 mixt in DHaH β H γ 4.222.14-1.711.914.613.154.933.10-2.934.422.30-1.812.10-1.994.472.21-1.842.10-1.934.443.25-3.134.652.994.542.944.341.721.41-1.064.282.302.02-1.924.281.851.77-1.69				

Table 128¹U Chamical shift of A a sW fro $2.0 \text{ mM} \text{ in } \mathbf{D} \mathbf{O}$ nt nU 9 5 and 200 V

		logK	UV-Vis		CD		EPR	
Species	105 P		λ/nm	ε/M ⁻¹ cm ⁻¹	λ/nm	$\Delta \epsilon/M^{-1}cm^{-1}$	A _∥ /mT	g
HL H ₂ L H ₃ L	9.65(1) 16.33(1) 22.16(1)	$\begin{array}{rcl} logK_{O\text{-}Tyr} &=& 9.65\\ logK_{Nim} &=& 6.68\\ logK_{Nim} &=& 5.83 \end{array}$						
CuL	8.27(1)		593	41	713 523 338 258	+0.147 +0.189 +0.259 +3.212	16,5	2.28
CuH.1L	1.39(2)	6.88	580	83	627 526 337 255 ?231 _{sh}	+0.268 +0.472 +0.610 +7.398 +0.696	17,6	2.24
CuH. ₂ L	-8.14(2)	9.53	575	101	625 524 335 255 231 _{sh}	+0.231 +0.395 +0.643 +7.283 +0.734	17,3	2.24
CuH_3L	-19.41(5)	11.27	minor					

Table 13S. Potentiometric	and spectroscopic data for pr	roton and Cu ²⁺ complexes of Ac-sW
Ac-PCHPPCHYIPR-NH ₂ .	Metal to ligand ratio = $1:1$;	$Cu^{2+}] = 0.001 \text{ M}.$

	$\log \beta$	logK	UV-Vis	UV-Vis		CD		
Species			λ/nm	$\epsilon/M^{-1}cm^{-1}$	λ/nm	$\Delta \epsilon/M^{-1}cm^{-1}$	A _∥ /mT	g_{\parallel}
HL H ₂ L H ₃ L H ₄ L	9.75(1) 18.12(1) 24.71(1) 30.52(1)	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
CuHL	19.98(3)		minor					
CuL	14.67(3)	5.31	629	109	671 571 489 _{sh} 332 282 239	-0.981 +0.383 +0.285 +0.332 -1.380 -3.702	16,8	2.22
CuH ₋₁ L	7.26(4)	7.41	649 _{sh} 518	41 118	680 _{sh} 550 480 310 256 236	-0.258 -0.621 +0.680 +0.918 +2.361 -5.040	20,8	2.17
CuH ₋₂ L	-2.40(6)	9.66	514	143	551 480 312 255 231	-0.932 +0.811 +1.054 +3.902 -9.353	20,7	2.17

Table 14S. Potentiometric and spectroscopic data for proton and Cu^{2+} complexes of **sW** PCHPPCHYIPR-NH₂. Metal to ligand ratio = 1:1; $[Cu^{2+}] = 0.001$ M.

Figure 1S. Selected regions of the TOCSY spectrum of Ac-nW in D₂O 2.0 mM at pH 8.5 and T 298 K: in the absence (black) and in the presence of 1.0 Ni^{2+} eq. (magenta). The broadening of selected cross-peaks upon metal addition are shown.

Figure 2S. ¹H longitudinal relaxation rates of Ac-nW (solid square) and nW (open circle) calculated in presence of 1.0 Ni^{2+} equivalents.

Figure 3S. tribution profile of competition between Ac-nW and Ac-cW in coordination of Ni^{2+} ; $[Ni^{2+}] = 0.001$; ligand to metal ratio 1.1:1.

Figure 4S. Aromatic region of ¹H 1D spectra of the Ac-cW in absence (upper trace) and in the presence of 1.0 Ni²⁺ (lower trace). The solutions were 2.0 mM, pH 8.4 T=298 in D_2O .

Figure 5S. I/I_0 profiles of the ¹H-¹H TOCSY correlations of Ac-cW in absence (I₀) and in presence (I) of 1.0 Ni²⁺ equivalents; 2.0 mM, pH 8.4 and T=298.

Figure 6S. Distribution profile of competition between Ac-nW and Ac-sW in coordination of Ni^{2+} ; $[Ni^{2+}] = 0.001$; ligand to metal ratio 1.1:1.

Figure 7S. H ¹D spectra of the Ac-sW in absence (black trace) and in the presence of 1.0 Ni^{2+} (grey trace). The solutions were 1.0 mM, pH 6 T=298 in D₂O.

Figure 8S. Selected region of the NOESY spectrum of cW 2 mM at pH 8.5 in the presence of 1.0 Ni^{2+} eq. The long range NOEs between residues located in the proximity of the binding site are indicated.

Figure 9S. Aromatic region of ¹H 1D spectra of the Ac-sW 2.0 mM T=298, pH 8.5, in the absence (apo) and in the presence of Cu^{2+} .

Figure 10S. Proton paramagnetic relaxation contributions (R_{1p}) of Ac-sW, calculated in presence of 0.1 (open squares) and 0.4 (solid squares) Cu²⁺ equivalents.