Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2008

Supporting Information for

Reactivity of the Zwitterionic Ligand EtNHC(S)Ph₂P=NPPh₂C(S)NEt

towards Ru₃(CO)₁₂. Ligand Fragmentation Leading to the

Methideylamide [-N(Et)-CH-] µ₃-Bridging Moiety.

Massimiliano Delferro, Roberto Pattacini, Daniele Cauzzi,* Claudia Graiff, Mattia Terenghi, Giovanni Predieri and Antonio Tiripicchio

Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Viale G.P. Usberti 17/A, 43100, Parma, Italy.

E-mail: cauzzi@unipr.it

The masses observed for cluster **6** and the intensity ratio of the different isotope peaks are in excellent agreement with the calculated pattern for the expected protonated molecule $\{Ru_3(CO)_7)(\mu_3-S)[(\mu_2-N:\eta-C:\kappa-P)Ph_2PN=PPh_2CHNEt](H)\}^+$ ([M+H]⁺-CO). Furthermore, other signals were present at m/z = 1041, 1025, 1003, 947, 919 and 891 Da attributed respectively to $[M+K]^+$, $[M+Na]^+$, $[M+H]^+$, $([M+H]^+-2CO)$, $([M+H]^+-3CO)$, $([M+H]^+-4CO)$ (Figure S1).

Figure S1 Positive ion ESI-MS of cluster 6 in CH₃OH.

These mass-to-charge ratios were interpreted as spectral fragments derived from the cluster in the LIT experiment, due to the desolvation temperature (250°C) and intrinsic instability of the CO molecule as ligand in gas phase. For refined tandem mass spectrum structural characterization, the gaseous $\{Ru_3(CO)_8)(\mu_3-S)[(\mu_2-N:\eta-C:\kappa-P)Ph_2PN=PPh_2CHNEt](H)\}^+$ ([M+H]⁺) protonated cluster centered at m/z = 1003 Da was mass-selected for collision-induced dissociation (CID). The product ion mass spectrum (figure S2) shows the loss of one, two, three and four molecules of CO at m/z = 975, 947, 919 and 891 Da respectively.

Figure S2 Positive ion ESI-MS-MS spectrum of $m/z = 1003 [M+H]^+$ of cluster 6 in CH₃OH.