ELECTRONIC SUPPLEMENTARY MATERIAL

Reactions of aquatitanium(II) with hypervalent chromium

species

Basab Bijayi Dhar*, Ritam Mukherjee and Edwin S. Gould*

Tables S1 to S5. Detailed kinetic data for redox reactions.

Fig S1. Kinetic Profile for the reaction of chromium(IV) with titanium(II) in solutions buffered by 2-ethyl-2-hydroxybutanoate(Lig⁻).

Fig S2. $k_{1(obs)}/[Ti(II)]$ vs. [Ti(IV)] for $Cr^{VI} \longrightarrow Cr^{V}$ according to Table S4.

Table S1. Reduction of chromium(IV) by titanium(II) in solutions buffered by 2-ethyl-

[Ti(II)]/ mM	[Ti(IV)]/ mM	$10^{-2}k_{\rm obs},{\rm s}^{-1}{}^{\rm b}$	
0.25	0.25	1.43 (1.41)	
0.50	0.50	2.8 (2.8)	
0.60	0.60	3.4 (3.4)	
0.75	0.75	4.1 (4.2)	

2-Hydroxybutanoate (Lig⁻). Kinetic data.^a

^aReactions were run at 22.0 \pm 0.5 °C; [HLig] + [Lig⁻] = 0.28 M, [Cr(IV)] = 5.0 \times 10⁻⁵ M,

 $\mu = 0.50 \text{ M} (\text{NaClO}_4 + \text{Lig}), \text{ pH} = 3.08, \lambda = 510 \text{ nm}.$

^bPseudo-first order rate constants; parenthetical values were calculated using rate law:

 $k_{\rm obs} = [{\rm Ti}^{\rm II}](5.5 \times 10^5 \,{\rm M}^{-1}{\rm s}^{-1}).$

Table S2. Reduction of chromium(V) by titanium(II) in solutions buffered by 2-ethyl-2-

[Ti(II)]/mM	[Ti(IV)]/mM	$k_{\rm obs},{ m s}^{-1}{ m b}$
0.50	0.50	26(26)
0.70	0.70	36(36)
1.00	1.00	52(51)
1.50	1.50	75(77)
0.50	1.00	25(26)
0.50	1.50	26(26)

hydroxybutanoate (Lig⁻). Kinetic data.^a

^aReactions at 22.0 ± 0.5 °C; [Cr^V] = 5.0×10^{-5} M; [HLig] + [Lig⁻] = 0.28 M; $\mu = 0.50$ M (NaClO₄ + Lig⁻); $\lambda = 510$ nm; pH = 3.1.

^bPseudo-first order rate constants; parenthetical values were calculated as $k_{obs} = [Ti^{II}]$ (5.1 × 10⁴ M⁻¹s⁻¹).

Table S3. Reduction of Cr(VI) by Ti(II) in the absence of ligands stabilizing Cr(V) and

[Ti(II)], mM	[Ti(IV)], mM	[H ⁺], M	$k_{\rm obs}$, s ^{-1 b}	$k_{\rm obs},{\rm s}^{-1{\rm c}}$	
1.00	1.00	0.50	11.2(11.3)	9.0(9.8)	
1.50	1.50	0.50	17.1(17.0)	14.6(14.8)	
2.0	2.0	0.50	23(23)	19.6(19.7)	
3.0	3.0	0.50	34(34)	32(29)	
5.0	5.0	0.50	57(57)	51(49)	
1.00	5.0	0.50	11.4(11.3)	9.6(9.8)	
1.00	10.0	0.50	11.1(11.3)	9.2(9.8)	
1.00	1.00	0.35	8.6(8.6)	8.2(8.1)	
1.00	1.00	0.25	6.8(6.8)	7.2(6.9)	
1.00	1.00	0.100	4.1(4.1)	5.1(5.2)	
1.00	1.00	0.050	3.2(3.2)	4.6(4.6)	

Cr(IV).Kinetic data^a

^aReactions at 22.0 ± 0.5 °C, $\mu = 0.50$ M, $\lambda = 350$ nm; $[Cr^{VI}] = 5 \times 10^{-5}$ M. All curves were exponential.

^bPseudo-first order rate constants in perchorate media. Parenthetical values were calculated using rate law $k_{obs} = (k_o + k_H [H^+]) [Ti^{II}]$, where $k_o = (23 \pm 1) \times 10^2 \text{ M}^{-1} \text{s}^{-1}$ and $k_H = (18 \pm 1) \times 10^3 \text{ M}^{-2} \text{s}^{-1}$.

^ePseudo-first order rate constants in triflate media. Parenthethetical values were calculated usingrate law above, where $k_0 = (41 \pm 1) \times 10^2 \text{ M}^{-1}\text{s}^{-1}$ and $k_{\text{H}} = (11.6 \pm 0.6) \times 10^3 \text{ M}^{-2}\text{s}^{-1}$.

Table S4. Biphasic reaction of Cr(VI) and Ti(II) in ligating buffer (Lig⁻) which stabilizes Cr(V)^a Rise and fall profile showing generation and decay of Cr(V)-ligand complex.

[Ti ^{II}]/ mM	[Ti ^{IV}]/ mM	$(k_1)_{\rm obs}, {\rm s}^{-1}{}^{\rm b}$	$(k_2)_{\rm obs}; {\rm s}^{-1}{}^{\rm c}$	
0.50	0.50	6.4 (6.4)	32 (29)	
0.80	0.80	15.8 (15.8)	48 (47)	
1.00	1.00	24 (23)	59 (58)	
1.50	1.50	50 (49)	80 (87)	
2.0	2.0	83 (83)	109 (116)	
2.5	2.5	121 (122)	139 (145)	
0.50	1.00	12.0 (11.9)	29 (29)	
0.50	1.50	17.1 (16.8)	31 (29)	
0.50	2.0	21 (21)	30 (29)	
0.50	2.5	24 (24)	30 (29)	
0.50	3.0	28 (28)	29 (29)	
0.50	3.5	31 (30)	29 (29)	
0.50	4.0	34 (33)	29 (29)	
0.50	5.0	37 (37)	30 (29)	
0.50	6.0	39 (41)	28 (29)	

 $Cr(VI) \xrightarrow{k_1} Cr(V) \xrightarrow{k_2} Cr(III)$

^aReactions were carried out at 22.0 \pm 0.5 °C; [HLig] + [Lig⁻] = 0.285 M; μ = 0.50 M (NaClO₄ + Lig⁻); pH 3.08; λ = 510 nm; [Cr^{VI}] = 0.05 – 0.20 mM. Contributing rate constants were calculated as described by Bose (ref. 18a).

^bParenthetical values were calculated using rate law (5) and parameters in text.

^cParenthetical values were calculated as $k_2 = [\text{Ti}^{II}](5.9 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}).$

Oxidant	[Ti(III)]/ mM	$k_{\rm obs},{\rm s}^{-1}$
Cr(VI) ^b	1.00	$4.3 (4.1)^d$
	3.00	$13.0(12.3)^{d}$
	5.00	19.3 (20.0) ^d
	8.00	32 (33) ^d
Cr(IV) ^c	0.60	80 (78) ^e
	0.80	106 (104) ^e
	1.00	128 (130)
	1.20	150 (156) ^e

Table S5. Reductions of Cr(VI) and Cr(IV) by Ti(III). Kinetic data.^a

^aReactions at 22.0 \pm 0.5 °C. All curves were exponential.

 ${}^{b}\mu = 0.50$ M (HCl/HClO₄); $\lambda = 350$ nm, [Cr^{VI}] = 1.0×10^{-4} M; no 2-methyl-2-hydroxybutanoate(Lig⁻) added.

^cpH 3.50, [HLig] + [Lig⁻] = 0.010 M; μ = 0.10 M (LiCl) λ = 510 nm; [Cr^{IV}] = 1.0 × 10⁻⁴ M.

^dPseudo-first order rate constants; parenthetical values were calculated using rate law: $k_{obs} = [Ti^{III}](4.1 \times 10^3 \text{ M}^{-1} \text{s}^{-1}).$

^ePseudo-first order rate constants; parenthetical values were calculated using rate law: $k_{obs} = [Ti^{III}](1.3 \times 10^4 \text{ M}^{-1}\text{s}^{-1}).$

Fig. S1. Kinetic profile at 510 nm for the reaction of chromium(IV) $(5.0 \times 10^{-5} \text{ M})$ with titanium(II) $(5.0 \times 10^{-4} \text{ M})$ in solutions buffered by 2-ethyl-2-hydroxybutanoate(Lig⁻) at 22.0 ± 0.5 °C. The pH was 3.08. [HLig] + [Lig⁻] = 0.28 M, $\mu = 0.50$ M (NaClO₄ + Lig⁻). Small circles denote experimental data; the solid line was calculated using first order rate law: A_t = A exp^{-kt} + A_∞ where A_t, A, A_∞ and *k* represent absorbance at time t, total absorbance change, final absorbance and rate constant respectively.

Fig. S2. $k_{1(obs)}/[Ti(II)]$ vs. [Ti(IV)] for $Cr^{VI} \longrightarrow Cr^{V}$ according to table S-4. [Ti(II)] = (0.50 - 2.5) mM; [Ti(IV)] = (0.50 - 6.0) mM. All the reactions were carried out at 22.0 $\pm 0.5 \text{ }^{\circ}C; [HLig] + [Lig^{-}] = 0.285 \text{ M}; \mu = 0.50 \text{ M} (NaClO_4 + Lig^{-}); \text{ pH } 3.08; \lambda = 510 \text{ nm}; [Cr^{VI}] = (0.05 - 0.20) \text{ mM}.$ Solid line represents calculated values using the equation: $k_{1(obs)}/[Ti^{2+}] = k_{cat}K[Ti^{IV}]/(1+K[Ti^{IV}])$ taking $k_{cat} = (15.8 \pm 0.7) \times 10^4 \text{ M}^{-1}\text{s}^{-1}$ and $K = (1.8 \pm 0.1) \times 10^2 \text{ M}^{-1}.$