Electronic Supplementary Information for Dalton Trans.

A Novel Fluorene-Containing κ^4 - P_2N_2 -Tetradentate Platinum(II) Complex

Mark R. J. Elsegood, Andrew J. Lake and Martin B. Smith* Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UK, LE11 3TU

^{*} To whom correspondence should be addressed. E-mail: m.b.smith@lboro.ac.uk. Tel: +44 (0)1509 222553. Fax: +44 (0)1509 223925.

Experimental Section

Materials. Reactions were carried out under aerobic conditions unless otherwise stated. Dichloromethane was previously distilled over CaH_2 and diethyl ether over sodium/benzophenone. HPLC grade acetone, methanol and other chemicals were obtained from commercial suppliers and used without further purification. The starting materials Ph_2PCH_2OH and $PtCl_2(cod)$ were prepared according to literature procedures.^{1,2}

Instrumentation. FT–IR spectra were recorded as pressed KBr pellets over the range 4000–200 cm⁻¹ using a Perkin-Elmer system 2000 FT spectrometer. ¹H NMR and ³¹P{¹H} NMR spectra were recorded on a Bruker DPX-400 FT spectrometer with chemical shifts (δ) reported relative to external TMS or 85% H₃PO₄. Coupling constants (*J*) in Hz. All NMR spectra were recorded in CDCl₃ solutions at *ca*. 298 K. Elemental analyses (Perkin-Elmer 2400 CHN or Exeter Analytical, Inc. CE-440 Elemental Analyzers) were performed by the Loughborough University Analytical Service within the Department of Chemistry. Compound **2** was analysed by low-resolution EI and CI (positive ion mode only) using CH₂Cl₂/CH₃OH as the solvent. Compound **3** was analysed (Finnigan MAT 95XP instrument) by low-resolution FAB (LSIMS) in positive ionisation mode using CH₂Cl₂ as the solvent and a NOBA matrix whereas compound **4** was analysed (Micromass ZQ4000 instrument) by electrospray (ES) in both positive and negative ionisation modes using CH₂Cl₂/CH₃OH as the solvent and CH₃OH/H₂O as the liquid flow in which samples were introduced into the source.

Preparation of Ph₂PCH₂NHN=CC₁₂H₈, 1. The solids H₂NN=CC₁₂H₈ (0.750 g, 3.86 mmol) and Ph₂PCH₂OH (1.045 g, 4.83 mmol) in CH₃OH (HPLC grade, 30 cm³) were refluxed, under a nitrogen atmosphere, for *ca*. 24 h. The yellow suspension was left to cool to ambient temperature and the volume concentrated, under reduced pressure, to *ca*. 10–15 cm³. The solid was filtered, washed with a small portion of CH₃OH and dried *in vacuo*. Yield: 1.402 g, 93%. Selected spectroscopic data for 1: δ_P (161.8 MHz: CDCl₃) –16.0 ppm. δ_H (400 MHz: CDCl₃) 7.71–7.20 (18H, m, arom. H), 6.55 (1H, br, NH), 4.37 (2H, d, ²*J*_{PH} 6 Hz, CH₂) ppm. δ_C (100.6 MHz: CDCl₃) 141.04 (s, CN); 136.09 (d, ¹*J*_{CP} 14.1 Hz), 133.24, 133.06, 129.04, 128.82, 128.76 (all PC₆H₅); 140.83, 137.86, 137.73, 130.14, 128.94, 127.72, 127.68, 127.32, 124.36, 120.61, 120.35, 119.41 (all C₁₂H₈); 51.4 (d, ¹*J*_{CP} 16.1 Hz, CH₂) ppm. FT–IR (KBr) v_{NH} 3284 cm⁻¹. Found: C, 79.69; H, 5.04; N, 6.68; C₂₆H₂₁N₂P requires C, 79.56; H, 5.40; N, 7.14.

Preparation of Ph₂P(O)CH₂NHN=CC₁₂H₈, 2: To an acetone (HPLC grade, 10 cm³) solution of **1** (0.101 g, 0.257 mmol) was added aq. H₂O₂ (27.5%, 0.1 cm³). After stirring for *ca.* 90 min the solution was evaporated to dryness. The residue was extracted into CH₂Cl₂ (1 cm³) and addition of diethyl ether (20 cm³) and hexanes (10 cm³) gave **2** which was collected by suction filtration and dried *in vacuo*. Yield: 0.079 g, 75%. Selected spectroscopic data for **2**: δ_P (161.8 MHz: CDCl₃) 28.6 ppm. δ_H (400 MHz: CDCl₃) 7.81–7.13 (18H, m, arom. H), 6.90 (1H, br, NH), 4.40 (2H, s, CH₂) ppm. FT–IR (KBr) v_{NH} 3244, v_{PO} 1210 cm⁻¹. EI–MS 408 [M]⁺. Found: C, 76.27; H, 5.15; N, 7.12; C₂₆H₂₁N₂PO requires C, 76.45; H, 5.19; N, 6.86.

Suitable crystals of **2** for X-ray crystallography were grown by the slow evaporation of a CH_3OH/C_7H_8 solution of the tertiary phosphine **1**.

Preparation of *cis*-PtCl₂(Ph₂PCH₂NHN=CC₁₂H₈)₂, **3**: To a CH₂Cl₂ (10 cm³) solution of PtCl₂(cod) (0.077 g, 0.206 mmol) was added **1** (0.164 g, 0.418 mmol) as a solid in one portion. The yellow solution was stirred for 15 min and concentrated, under reduced pressure, to approx. 2 cm³. Addition of diethyl ether (20 cm³) gave solid **3** which was collected by suction filtration and dried *in vacuo*. Yield: 0.214 g, 99%. Selected spectroscopic data for **3**: δ_P (161.8 MHz: CDCl₃) 9.6 ppm, ¹*J*_{PtP} 3721 Hz. δ_H (400 MHz: CDCl₃) 8.34 (2H, d, arom. H), 8.22 (2H, t, NH), 7.72–6.88 (34H, m, arom. H), 4.65 (4H, d, ²*J*_{PH} 5.6 Hz, CH₂) ppm. δ_C (100.6 MHz: CDCl₃) 140.66 (s, CN); 133.51, 129.24, 128.29 (all PC₆H₅); 140.36, 137.95, 137.87, 131.16, 129.97, 128.64, 127.66, 127.31, 125.36, 120.30, 120.14, 119.44 (all C₁₂H₈); 55.9 (m, ¹*J*_{CP} 44.2 Hz, CH₂) ppm. FT–IR (KBr) v_{NH} 3358, v_{PtCl} 314, 292 cm⁻¹. FAB–MS 1015 [M–Cl]⁺. Found: C, 59.55; H, 4.53; N, 4.96; C₅₂H₄₂N₄P₂PtCl₂ requires C, 59.43; H, 4.04; N, 5.33. Suitable crystals for X-ray crystallography were grown by vapour diffusion of Et₂O into a CDCl₃ solution of **3**.

Preparation of Pt(κ^4 -*P*₂*N*₂-**Ph**₂**PCH=NNCC**₁₂**H**₈)₂, 4: A suspension of **3** (0.300 g, 0.285 mmol) and ^{*t*}BuOK (0.071 g, 0.633 mmol) in CH₃OH (HPLC grade, 20 cm³) were refluxed, under a nitrogen atmosphere, for 4 h. The suspension was allowed to cool, the volume reduced by *ca.* half and the solid isolated by filtration under vacuum. Yield: 0.177 g, 64%. Selected spectroscopic data for 4: δ_P (161.8 MHz: CDCl₃) 55.3 ppm, ¹*J*_{PtP} 3300 Hz. δ_H (400 MHz, 298 K: CDCl₃) 8.30 (4H, br, arom. H), 7.42–7.26 (20H, m, arom. H), 7.00 (4H, br, arom. H), 6.70 (4H, br, arom. H), 6.20 (4H, br, arom. H), 5.75 (2H, d, ²*J*_{PH} 32 Hz, CH₂) ppm. δ_C (100.6 MHz: CDCl₃) 92.5 (t, ²*J*_{CPt} 51.8 Hz, CH) ppm. ES–MS 977 [M–H]⁺. Found: C, 60.54; H, 3.63; N, 4.07; C₅₂H₃₈N₄P₂Pt·3H₂O requires C, 60.63; H, 4.31; N, 5.44. Suitable crystals for X-ray crystallography were grown by vapour diffusion of Et₂O into a CH₂Cl₂/C₇H₈ solution of **4**.

References

1. H. Hellmann, J. Bader, H. Birkner and O. Schumacher, Justus Liebigs Ann. Chem, 1962, 659, 49.

2. J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc., 1976, 98, 6521.

Additional X-ray Figures (for 2–4) and Variable Temperature ¹H NMR spectra (for 4)

ESIFIG1 for **2** showing the full atom numbering scheme for both independent molecules.

ESIFIG2 for **3** showing the full atom numbering scheme.

ESIFIG4 for 4 showing the variable temperature ¹H NMR spectra (CDCl₃) in the range 20 - -40 °C.

