Electronic Supporting Information

First example of an enantiopure planar chiral ligand built on a $(\eta^5$ -cyclohexadienyl)Mn(CO)₃ scaffold.

Derya Cetiner,^[a,b] Béatrice Jacques,^[a,b] Elina Payet,^[a,b] Murielle Chavarot-Kerlidou,*^[a,b]

Françoise Rose-Munch,*^[a,b] Eric Rose,^[a,b] Jean-Philippe Tranchier^[a,b] and Patrick Herson.^[c,d]

^[a] UPMC Univ Paris 06, UMR 7611, Laboratoire de Chimie Organique, Institut de Chimie Moléculaire (FR 2769), Case 181, 4 place Jussieu, F-75252 Paris Cedex 05, France.

Fax: (+33) (0)1-44-27-55-04

E-mail: murielle.chavarot-kerlidou@upmc.fr, francoise.rose@upmc.fr

^[b] CNRS, UMR 7611, Laboratoire de Chimie Organique, F-75005, Paris, France.

^[c] UPMC Univ Paris 06, UMR 7071, Laboratoire de Chimie Inorganique et Matériaux Moléculaires, F-75005, Paris, France.

^[d] CNRS, UMR 7071, Laboratoire de Chimie Inorganique et Matériaux Moléculaires, F-75005, Paris, France. **General comments.** All reactions and manipulations were routinely performed under a dry nitrogen atmosphere using standard Schlenk techniques. Tetrahydrofurane (THF) was dried over sodium benzophenone ketyl and distilled. *N*,*N*,*N'*,*N'*-Tetramethylethylenediamine (TMEDA) was distilled over potassium hydroxide (KOH) and stored under nitrogen over 4Å molecular sieves. Ph₂PCl, Ph₂(O)PCl and the palladium complex [(η^3 -allyl)PdCl]₂ were purchased from ACROS and [H₂C=NMe₂][I], (CH₂)₂I₂ from ALDRICH. NMR spectra were recorded on a Bruker ARX 200 MHz or Avance 400 MHz spectrometer. ¹H and ¹³C signals of NMR solvent CDCl₃ were used as internal standards respectively at δ = 7.26 ppm and δ = 77.36 ppm. The Mn(CO)₃ carbonyl signal is known to be difficult to observe, specially when only low quantities of complex are available. Infrared spectra were measured on a Bruker Tensor 27 spectrometer. Elemental analyses were performed by the Service Central d'Analyse du CNRS. Mass spectra were performed for MALDI-TOF by the Plate-Forme Spectrométrie de Masse (UMR 7613, UPMC) and for the EI-MS by the Service de Spectrométrie de Masse de l'ENS (Chemistry Dpt, Paris).

Complexes $\mathbf{1}^{[10]}$ and (*S*)- $\mathbf{8}^{[17]}$ were synthesized according to procedures previously described in the literature.

^[10] Y. K. Chung, P. G. Williard, D. A. Sweigart, *Organometallics* 1982, 1, 1053.

^[17] a) K. Tani, L. D. Brown, J. Ahmed, J. A. Ibers, M. Yokota, A. Nakamura, S. Otsuka, *J. Am. Chem. Soc.*, 1977, **99**, 7876. b) N. K. Roberts, S. B. Wild, *J. Am. Chem. Soc.*, 1979, **101**, 6254. c) T. Mino, Y. Tanaka, Y. Hattori, T. Yabusaki, H. Saotome, M. Sakamoto, T. Fujita, *J. Org. Chem.*, 2006, **71**, 7346.

Typical procedure for the synthesis of complexes 2, 3, 4, 5 and 6. A solution of complex 1 (for 2, 3 and 4) or complex 4 (for 5 and 6) (1 mmol) and freshly distilled TMEDA (1.6 eq) in 10 mL of THF was cooled to -78°C. A solution of *n*BuLi (1.6M in hexanes, 1.6 eq) was slowly added. The mixture was stirred for 1 hour at -78°C before the addition of the electrophile (Ph₂PCl, Ph₂(O)PCl, [H₂C=NMe₂][I] or (CH₂)₂I₂; 2 eq). The mixture was stirred for another hour at -78°C before warming to room temperature and quenching by addition of H₂O. After extraction of the mixture by Et₂O, the combined organic layers were washed with a saturated aqueous sodium chloride solution and dried over magnesium sulfate. After concentration *in vacuo*, the crude mixture was purified by flash chromatography on silica gel to afford the pure functionalized η^5 -cyclohexadienyl complex 2, 3, 4, 5 or 6.

2 (83%). ¹H NMR (400 MHz, CDCl₃): δ 3.35 (m, 1H, H⁵), 3.43 (s, 3H, OMe), 3.56 (m, 1H, H¹), 4.02 (t_{app}, ³J = 6.0 Hz, 1H, H⁶), 4.39 (d, ³J = 7.4 Hz, 1H, H⁴), 6.98 (d, ³J = 7.0 Hz, 2H, H^{Ar}), 7.22-7.37 (m, 9H, H^{Ar}), 7.44-7.47 (m, 4H, H^{Ar}). ¹³C NMR (100 MHz, CDCl₃): δ 41.6 (C⁶), 42.3 (C¹), 55.1 (OMe), 57.7 (C⁵), 81.2 (d, ¹J^{CP} = 20 Hz, C³), 95.7 (C⁴), 125.5 (CH^{Ar}), 127.0 (CH^{Ar}), 128.6 (d, ³J^{CP} = 7 Hz, CH^{Ar}), 128.8 (CH^{Ar}), 128.9 (d, ³J^{CP} = 7 Hz, CH^{Ar}), 128.9 (CH^{Ar}), 129.8 (CH^{Ar}), 133.4 (d, ²J^{CP} = 20 Hz, CH^{Ar}), 135.0 (d, ¹J^{CP} = 12 Hz, C^{Ar}), 135.1 (d, ²J^{CP} = 20 Hz, CH^{Ar}), 137.6 (d, ¹J^{CP} = 12 Hz, C^{Ar}), 146.2 (d, ²J^{CP} = 14 Hz, C²), 147.7 (C^{Ar}). ³¹P NMR (161 MHz, CDCl₃): δ -17.2 (PPh₂). IR (neat): 1917 (Mn(CO)₃), 2009 (Mn(CO)₃). HRMS (MALDI TOF, positive mode): 509.0266 (M+H⁺, calcd for C₂₈H₂₃MnO₄P: 509.0714). Anal. Calcd for C₂₈H₂₂MnO₄P: C, 66.15 ; H, 4.36. Found: C, 66.06 ; H, 4.07.

¹³C NMR spectrum (100 MHz, CDCl₃) of complex **2**.

3 (70%). ¹H NMR (400 MHz, CDCl₃): δ 3.14 (s, 3H, OMe), 3.42 (t_{app}, ³*J* = 6.0 Hz, 1H, H¹), 3.63 (t_{app}, ³*J* = 6.0 Hz, 1H, H⁵), 4.02 (t, ³*J* = 6.0 Hz, 1H, H⁶), 5.74 (t, ³*J* = 7.0 Hz, 1H, H⁴), 6.97 (d, ³*J* = 7.0 Hz, 2H, H⁸), 7.22-7.29 (m, 5H, H^{Ar}), 7.42-7.56 (m, 4H, H^{Ar}), 7.75-7.89 (m, 4H, H^{Ar}). ¹³C NMR (100 MHz, CDCl₃): δ 41.5 (C6), 42.7 (C1), 54.3 (OMe), 60.3 (C5), 97.3 (C⁴), 125.5 (CH^{Ar}), 127.2 (CH^{Ar}), 127.9 (d, ²*J*^{CP} = 12 Hz, CH^{Ar}), 128.6 (d, ²*J*^{CP} = 12 Hz, CH^{Ar}), 128.7 (CH^{Ar}), 131.9 (CH^{Ar}), 132.1 (d, ³*J*^{CP} = 10 Hz, CH^{Ar}), 132.8 (CH^{Ar}), 147.2 (C²), 216.6 (Mn(CO)₃). ³¹P NMR (CDCl₃): δ 30.3. IR (neat): 1952 (Mn(CO)₃), 2015(Mn(CO)₃). HRMS (ESI, positive mode): 525.0658 (M+H⁺, calcd for C₂₈H₂₃O₅MnP: 525.0664).

4 (73%). ¹H NMR (400 MHz, CDCl₃): δ 2.41 (s, 6H, NMe₂), 3.06 (d, ²*J* = 12.5 Hz, 1H, H¹¹), 3.31 (ddd, ³*J* = 7.3 Hz, ³*J* = 6.2 Hz, ⁴*J* = 1.6 Hz, 1H, H⁵), 3.40 (dd, ³*J* = 6.2 Hz, ⁴*J* = 1.6 Hz, 1H, H¹), 3.42 (s, 3H, OMe), 3.91 (t_{app}, ³*J* = 6.2 Hz, 1H, H⁶), 4.21 (d, ²*J* = 12.5 Hz, 1H, H¹¹), 5.05 (d, ³*J* = 7.3 Hz, 1H, H⁴), 6.94 (d, ³*J* = 7.3 Hz, 2H, H^{Ar}), 7.13 (t, ³*J* = 7.3 Hz, 1H, H^{Ar}), 7.21 (t_{app}, ³*J* = 7.3 Hz, 2H, H^{Ar}). ¹³C NMR (100 MHz, CDCl₃): δ 41.5 (C¹), 42.6 (C⁶), 45.5 (NMe₂), 54.8 (OMe), 56.2 (C⁵), 59.0 (C¹¹), 85.3 (C³), 97.2 (C⁴), 125.6 (CH^{Ar}), 127.0 (CH^{Ar}), 128.8 (CH^{Ar}), 143.4 (C² or C^{Ar}), 147.5 (C² or C^{Ar}), 222.9 (Mn(CO)₃). IR (neat): 1909 (Mn(CO)₃), 2006 (Mn(CO)₃). HRMS (MALDI TOF, positive mode): 382.0798 (M+H⁺, calcd for C₁₉H₂₁O₄MnN: 382.0851).

5 (94%). ¹H NMR (400 MHz, CDCl₃): δ 2.44 (s, 6H, NMe₂), 3.39 (s, 3H, OMe), 3.49 (d, ³*J* = 6.1 Hz, 1H, H¹), 3.59 (d, ²*J* = 12.8 Hz, 1H, H¹¹), 3.84 (m, 2H, H⁵ and H⁶), 4.14 (d, ²*J* = 12.8 Hz, 1H, H¹¹), 6.92 (d, ³*J* = 7.5 Hz, 2H, H^{Ar}), 7.15 (t, ³*J* = 7.3 Hz, 1H, H^{Ar}), 7.23 (t, ³*J* = 7.7 Hz, 2H, H^{Ar}). ¹³C NMR (100 MHz, CDCl₃): δ 43.8 (C¹), 45.5 (C⁶), 45.6 (NMe₂), 55.3 (OMe), 60.7 (C¹¹), 65.6 (C⁵), 78.9 (C³ or C⁴), 88.5 (C³ or C⁴), 125.6 (CH^{Ar}), 127.3 (CH^{Ar}), 128.9 (CH^{Ar}), 139.2 (C^{Ar}), 146.9 (C²). IR (neat): 1910 (Mn(CO)₃), 2022 (Mn(CO)₃). HRMS (ESI, positive mode): 507.9812 (M+H⁺, calcd for C₁₉H₂₀IMnNO₄: 507.9818).

¹³C NMR spectrum (100 MHz, CDCl₃) of complex **5**.

6 (76%). ¹H NMR (400 MHz, CDCl₃): δ 1.92 (s, 6H, NMe₂), 3.19 (d, ³*J* = 6.1 Hz, 1H, H⁵), 3.28 (dd, ³*J* = 5.0 Hz, ⁴*J* = 1.3 Hz, 1H, H¹), 3.61 (s, 3H, OMe), 3.83 (d, ²*J* = 12.7 Hz, 1H, H¹¹), 3.97 (t, ³*J* = 6.0 Hz, 1H, H⁶), 4.14 (dd, ²*J* = 12.7 Hz, *J* = 4.1 Hz, 1H, H¹¹), 6.81 (t, ³*J* = 7.6 Hz, 2H, H^{Ar}), 6.89 (t, ³*J* = 7.1 Hz, 2H, H^{Ar}), 6.95 (d, ³*J* = 7.2 Hz, 2H, H^{Ar}), 7.10 (t, ³*J* = 7.1 Hz, 1H, H¹¹), 7.20-7.37 (m, 8H, H^{Ar}). ¹³C NMR (100 MHz, CDCl₃): δ 37.7 (C¹), 42.4 (C⁶), 43.9 (NMe₂), 54.6 (d, ³*J*^{CP} = 13.7 Hz, C¹¹), 55.0 (OMe), 61.5 (d, ²*J*^{CP} = 5 Hz, C⁵), 91.3 (d, *J*^{CP} = 21 Hz, CH^{Ar}), 127.9 (CH^{Ar}), 128.6 (d, ³*J*^{CP} = 12 Hz, CH^{Ar}), 129.0 (CH^{Ar}), 127.7 (d, ³*J*^{CP} = 8 Hz, CH^{Ar}), 127.9 (CH^{Ar}), 134.8 (C^{Ar}), 136.1 (d, ²*J*^{CP} = 20 Hz, C^{Ar}), 143.6 (d, ³*J*^{CP} = 5 Hz, C²), 147.1 (C^{Ar}), 222.4 (Mn(CO)₃). ³¹P NMR (161 MHz, CDCl₃): δ -9.2 (PPh₂). IR (neat): 1925 (Mn(CO)₃), 2010 (Mn(CO)₃). HRMS (ESI, positive mode): 566.1287 (M+H⁺, calcd for C₃₁H₃₀O₄MnNP : 566.1293).

¹³C NMR spectrum (100 MHz, CDCl₃) of complex **6**.

Preparation of complex 7 ((2)Pd(allyl)Cl). In a glove box, the dimeric complex $[(allyl)PdCl]_2$ (0,20 mmol, 1eq) was introduced in a Schlenck tube. Then, under N₂, complex **2** (0,42 mmol, 2,1 eq) was added. At -78°C, Et₂O (5 mL) was added and the mixture was stirred for 30 minutes at -78°C before warming slowly to room temperature. After concentration *in vacuo*, the crude mixture was washed with pentane and filtered. The palladium complex **7** was isolated in 63% yield as a cream powder.

¹H NMR (400MHz, CDCl₃): δ 2.78 (d, J = 12.1 Hz, 1H, allyl), 3.02 (s, 3H, OMe), 3.05 (m, 1H), 3.07 (s, 3H, OMe), 3.16 (m, 1H), 3.35 (m, 1H), 3.47 (m, 2H), 3.56-3.76 (m, 4H), 4.01 (m, 2H), 4.72 (m, 2H), 5.56 (m, 2H), 6.06 (m, 1H), 6.24 (m, 1H), 7.00-7.06 (m, 4H, H^{Ar}), 7.20-7.43 (m, 18H, H^{Ar}), 7.65-7.77 (m, 8H, H^{Ar}). ³¹P NMR (161 MHz, CDCl₃): δ 24.6, 25.4. IR (neat): 1926 (Mn(CO)₃), 2015 (Mn(CO)₃). HRMS (MALDI TOF, positive mode): 655.0125 (M-Cl⁻, calcd for C₃₁H₂₇MnO₄PPd: 655.0062).

Resolution procedure of racemic complex (±)-2:

Synthesis and separation of diastereoisomeric complexes (S,6R,3pR)-8 and (S,6S,3pS)-8:

A mixture of (\pm) -2 (0.200 g, 0.4 mmol) and (S)-(+)-di- μ -chlorobis[2-[(dimethylamino)ethyl]phenyl- C^2 ,N]dipalladium(II) (0.116 g, 0.2 mmol) in toluene (3.0 mL) was stirred at room temperature for 1h. After concentration *in vacuo*, the crude mixture was purified by flash chromatography on silica gel to separate the diastereoisomeric mixture of (S, 6R, 3pR)-8 and (S, 6S, 3pS)-8.

(*S*, *6R*, *3pR*)-**8** (34%). de = 95%. R_f = 0.66 (Et₂O). $[\alpha]_D^{20}$ +45 (*c* 0.23, CHCl₃). ¹H NMR (CDCl₃): δ 1.84 (d, ³*J* = 6.6 Hz, 3H, H²⁶), 2.69 (s, 3H, NMe), 2.76 (s, 3H, NMe), 2.89 (s, 3H, OMe), 3.36 (d, ³*J* = 6.4 Hz, 1H, H¹), 3.47 (t, ³*J* = 7.1 Hz, 1H, H⁵), 3.75 (t, ³*J* = 5.7 Hz, 1H, H²⁵), 3.95 (t, ³*J* = 5.9 Hz, 1H, H⁶), 6.39-6.46 (m, 2H, H^{Ar}), 6.52 (t, ³*J* = 7.8 Hz, 1H, H⁴), 6.84 (t, ³*J* = 7.6 Hz, 1H, H^{Ar}), 6.93 (d, ³*J* = 7.0 Hz, 1H, H^{Ar}), 7.15-7.43 (m, 11H, H^{Ar}), 7.65 (dd, ³*J* = 7.4 Hz, ³*J* = 12.0, 2H, H^{Ar}), 7.80 (dd, ³*J* = 7.3 Hz, ³*J* = 11.9 Hz, 2H, H^{Ar}). ¹³C NMR (100 MHz, CDCl₃): δ 21.7 (C²⁶), 41.5 (C⁶), 43.1 (C¹), 46.9 (NMe), 50.6 (NMe), 54.0 (OMe), 57.9 (d, ³*J*^{CP} = 10 Hz, C⁵), 76.0 (C²⁵), 80.1 (d, ¹*J*^{CP} = 47 Hz, C³), 105.3 (d, ²*J*^{CP} = 22 Hz, C⁴), 122.4 (CH^{Ar}), 124.2 (CH^{Ar}), 125.4 (d, ³*J*^{CP} = 5 Hz, CH^{Ar}), 126.4 (CH^{Ar}), 126.9 (d, ²*J*^{CP} = 12 Hz, CH^{Ar}), 133.4 (d, ²*J*^{CP} = 11 Hz, CH^{Ar}), 134.0 (C^{Ar}), 134.5 (C^{Ar}), 136.2 (d, ²*J*^{CP} = 11 Hz, CH^{Ar}), 137.6 (d, ³*J*^{CP} = 8 Hz, CH^{Ar}), 144.9 (C²), 147.1 (C^{Ar}), 152.9 (C^{Ar}), 154.6 (C^{Ar}). ³¹P NMR (161 MHz, CDCl₃): δ 39.0 (PPh₂). IR (neat): 1925 (Mn(CO)₃), 2014 (Mn(CO)₃). HRMS (ESI, positive mode): 798.0568 (M+H⁺⁺, Calcd for: C₃₈H₃₇O₄ClMnNPPd: 798.0564).

 13 C NMR spectrum (100 MHz, CDCl₃) of complex (*S*,6*R*,3*pR*)-8.

(S, 6S, 3pS)-8 (36%). de = 95%. $R_f = 0.50$ (Et₂O). $[\alpha]_D^{20}$ -50 (c 0.21, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 1.79 (d, ${}^{3}J$ = 6.4 Hz, 3H, H²⁶), 2.72 (s, 6H, NMe₂), 2.99 (s, 3H, OMe), 3.29 $(t_{app}, {}^{3}J = 6.5 \text{ Hz}, \text{H}^{5}), 3.37 \text{ (d}, {}^{3}J = 5.9 \text{ Hz}, 1\text{H}, \text{H}^{1}), 3.79 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, \text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.8 \text{ Hz}, 1\text{H}, 1\text{H}, 1\text{H}^{25}), 3.93 \text{ (t}, {}^{3}J = 5.$ 6.0 Hz, 1H, H⁶), 5.91 (t, ${}^{3}J = 7.8$ Hz, 1H, H⁴), 6.46 (t, ${}^{3}J = 7.2$ Hz, 1H, H^{Ar}), 6.59 (t, ${}^{3}J =$ 6.8Hz, 1H, H^{Ar}), 6.84 (t, ${}^{3}J$ = 7.2 Hz, 1H, H^{Ar}), 6.93 (d, ${}^{3}J$ = 6.8 Hz, 1H, H^{Ar}), 7.08 (d, ${}^{3}J$ = 7.2 Hz, 2H, H^{Ar}), 7.22-7.27 (m, 4H, H^{Ar}), 7.32-7.37 (m, 4H, H^{Ar}), 7.44 (d, ${}^{3}J = 6.8$ Hz, 1H, H^{Ar}), 7.72 (dd, ${}^{3}J$ = 7.0Hz, ${}^{3}J$ = 11.9 Hz, 2H, H^{Ar}), 7.95 (dd, ${}^{3}J$ = 7.4 Hz, ${}^{3}J$ = 11.5 Hz, 2H, H^{Ar}). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 21.1 (C²⁶), 40.9 (C⁶), 41.9 (C¹), 46.6 (NMe), 50.4 (NMe), 54.0 (OMe), 58.0 (d, ${}^{3}J^{CP} = 10.3$ Hz, C⁵), 75.7 (C²⁵), 78.6 (d, ${}^{1}J^{CP} = 46$ Hz, C³), 103.6 (d, ${}^{2}J^{CP} =$ 10.3 Hz, C^4), 122.6 (CH^{Ar}), 124.3 (CH^{Ar}), 125.7 (d, ${}^{3}J^{CP} = 5.1$ Hz, CH^{Ar}), 125.9 (CH^{Ar}), 126.8 $(d, {}^{2}J^{CP} = 12 \text{ Hz}, \text{CH}^{\text{Ar}}), 127.2 \text{ (CH}^{\text{Ar}}), 128.4 \text{ (d}, {}^{2}J^{CP} = 10.3 \text{ Hz}, \text{CH}^{\text{Ar}}), 128.7 \text{ (CH}^{\text{Ar}}), 128.9$ (d, ${}^{3}J^{CP} = 5.1$ Hz, CH^{Ar}), 129.9 (d, ${}^{3}J^{CP} = 2.6$ Hz, CH^{Ar}), 130.4 (d, ${}^{3}J^{CP} = 2.6$ Hz, CH^{Ar}), 134.2 (d, ${}^{2}J^{CP} = 12$ Hz, CH^{Ar}), 135.8 (d, ${}^{2}J^{CP} = 12$ Hz, CH^{Ar}), 137.0 (d, ${}^{2}J^{CP} = 10.3$, CH^{Ar}), 145.5 (C²), 147.2 (C^{Ar}), 151.7 (C^{Ar}), 154.4 (C^{Ar}). ³¹P NMR (161 MHz, CDCl₃): *δ* 39.0 (PPh₂). IR (neat): 1920 (Mn(CO)₃), 2011 (Mn(CO)₃). HRMS (ESI, positive mode): 798.0596 (M+H⁺, Calcd for: C₃₈H₃₇O₄ClMnNPPd: 798.0564).

 13 C NMR spectrum (100 MHz, CDCl₃) of complex (*S*, 6*S*, 3*pS*)-8.

Decomplexation of (*S*,*6S*,*3pS*)-8 and (*S*,*6R*,*3pR*)-8:

To an individual diastereoisomer (*S*,*6S*,*3pS*)-**8** and (*S*,*6R*,*3pR*)-**8** (0.1 mmol) was added a 0.1 M solution of ethylenediamine in chloroform (2 mL, 0.2 mmol) at room temperatue and the mixture was stirred for 10 min. After concentration *in vacuo*, the crude mixture was purified by flash chromatography on silica gel to afford the enantiopure (6S,3pS)-**2** or (6R,3pR)-**2**.

(6S, 3pS)-2 (77%). $[\alpha]_D^{20} = +57$ (c 0.21, CHCl₃)

(6R, 3pR)-2 (84%). $[\alpha]_D^{20}$ = -58 (c 0.21, CHCl₃)