Supplementary Information (SI)

This section includes the optimized geometries of the gold complexes $[(\mu-1, n-C_2B_{10}H_{10}){Au(PPh_3)}_2]$, with $n = \{2, 7, 12\}$. The computational method consists in the B3LYP Hartree-Fock/DFT hybrid method as implemented in the suite of programmes Gaussian03 [1], with the 6-31G* basis set for all atoms except Au, where LANL2DZ pseudopotentials are used for. Also included in this SI are the frontier orbitals in complexes $[(\mu-1, n-C_2B_{10}H_{10}){Au(PPh_3)}_2]$, with $n = \{2, 7\}$.

Figure S1a. Optimized geometry for complex $[(\mu-1,2-C_2B_{10}H_{10}){Au(PPh_3)}_2]$, C_1 symmetry. B3LYP calculations – 6-31G* basis set for all atoms except Au; LANL2DZ pseudopotential for Au atoms.

Figure S1b. (a) HOMO and (b) LUMO of $[(\mu-1,2-C_2B_{10}H_{10}){Au(PPh_3)}_2]$ (orbital function isovalue = 0.02). Calculations with the optimized geometry at the B3LYP level – 6-31G* for all atoms, except Au; LANL2DZ pseudopotential for Au.

Figure S2a. Optimized geometry for complex $[(\mu-1,7-C_2B_{10}H_{10}){Au(PPh_3)}_2]$, C_2 symmetry. B3LYP calculations – 6-31G* basis set for all atoms, except Au; LANL2DZ pseudopotential for Au atoms.

Figure S2b. (a) HOMO and (b) LUMO of $[(\mu-1,7-C_2B_{10}H_{10}){Au(PPh_3)}_2]$ (orbital function isovalue = 0.02). Calculations with the optimized geometry at the B3LYP level – 6-31G* for all atoms, except Au; LANL2DZ pseudopotential for Au.

Table S1, Table S2 and Table S3 include the cartesian coordinates (in Å) of the optimized geometries for gold complexes $[(\mu-1,n-C_2B_{10}H_{10}){Au(PPh_3)}_2]$, with $n = \{2, 7, 12\}$ respectively; B3LYP calculations – 6-31G* basis set for all atoms, except Au; LANL2DZ pseudopotentials are used for Au atoms.

Atom	Х	Y	Z	
Au	1.895786	1.151363	0.004496	
Au	-1.866561	1.134238	0.022353	
Р	3.181546	-0.847752	0.002975	
Р	-3.169351	-0.855725	0.000273	
С	0.852453	2.946259	0.001102	
С	-0.834554	2.936512	0.008681	
В	0.013241	3.391655	1.425462	
В	1.439326	4.296180	0.876556	
В	1.431004	4.288155	-0.891553	
В	-0.000289	3.378953	-1.419464	
В	-1.427397	4.280578	0.889175	
В	0.003509	5.171380	1.441342	
В	0.882902	5.731765	-0.011565	
В	-0.009767	5.158238	-1.451356	
В	-1.436060	4.272674	-0.878531	
В	-0.895221	5.722227	-0.003402	
С	4.930968	-2.045248	1.904445	
С	5.293244	-2.424679	3.198280	
С	4.464731	-2.114778	4.278802	
С	3.273278	-1.417708	4.066141	
С	2.908666	-1.033154	2.775278	
С	3.730407	-1.353235	1.681708	
Н	5.588282	-2.276885	1.071531	
Н	6.227198	-2.955442	3.361536	
Н	4.752912	-2.405003	5.285438	
Н	2.634007	-1.157768	4.905106	
Н	1.994939	-0.466110	2.617174	
С	2.443137	-3.596307	-0.191135	
С	1.730677	-4.656567	-0.755912	
С	0.842740	-4.424027	-1.807591	
С	0.664286	-3.127594	-2.296828	
С	1.372354	-2.065475	-1.734206	
С	2.272629	-2.291789	-0.679182	
Н	3.125620	-3.784982	0.632120	
Н	1.867749	-5.662799	-0.369148	
Η	0.283962	-5.249196	-2.240467	
Н	-0.037069	-2.939008	-3.104176	
Н	1.218186	-1.056030	-2.106816	
С	5.244861	-1.783732	-1.721765	
С	6.420745	-1.623669	-2.457306	
С	7.070825	-0.388281	-2.481292	

Table S1. Gold Complex $[(\mu - 1, 2 - C_2 B_{10} H_{10}) \{Au(PPh_3)\}_2]$

E	lectronic	Supp	lementary]	Informati	ion for	Dalton	Transactions
T	his journa	al is ©) The Roya	al Society	of Ch	emistry	2009

		-	-
С	6.541622	0.692128	-1.771556
С	5.364883	0.538892	-1.038673
С	4.711203	-0.703950	-1.001900
Н	4.739200	-2.744719	-1.718022
Н	6.824434	-2.463835	-3.015765
Н	7.982821	-0.265084	-3.058901
Н	7.036507	1.658720	-1.796596
Н	4.946590	1.387429	-0.503493
С	-3.254213	-3.139915	-1.698062
С	-3.233715	-3.768277	-2.944916
С	-3.066739	-3.013659	-4.108651
С	-2.915308	-1.627069	-4.024101
С	-2.934352	-0.995481	-2.779665
С	-3.112805	-1.746825	-1.606561
Н	-3.371539	-3.734657	-0.797061
Н	-3.347510	-4.847361	-3.005921
Н	-3.051762	-3.504526	-5.078044
Н	-2.777931	-1.035625	-4.924902
Н	-2.802930	0.081660	-2.716887
C	-3.600119	-2.856182	1.984736
C	-3.162321	-3.783043	2.933502
C	-1.797393	-3.953406	3.170845
C	-0.866004	-3.192790	2.459457
C	-1.298585	-2.262218	1.515350
C	-2.670191	-2.091558	1.265060
H	-4.663838	-2.723140	1.813141
H	-3.890336	-4.366799	3.490220
H	-1.460350	-4.671358	3.913674
H	0.197525	-3.313022	2.645652
H	-0.5/15/4	-1.662980	0.9/389/
C	-5.976926	-1.266002	-0.264390
C	-7.310809	-0.968113	0.020427
C	-7.626504	0.086035	0.8/9899
C	-6.605812	0.848002	1.452641
C	-5.2/1619	0.55/510	1.16/554
U	-4.945961	-0.508428	0.312344
H	-5./41559	-2.080236	-0.942989
H	-8.102391	-1.556880	-0.435005
П	-8.003031	0.319233	1.095320
H	-6.845644	1.6//553	2.111556
H	-4.481839	1.166/29	1.599125
п	0.0000000	2.043/12	-2.551054
П	0.021233	2.004395	2.303038
п	-2.430932	4.145245	1.303413
п u	-2.431083	4.131044	-1.401002
п u	2.441039	4.130242	-1.304839
п u	2.433/94	4.1/1014	1.40113/
п	-0.017445	5 7/00/6	-0.019313
н Н	-0.01/443	6 717556	-2.490290
н	0.00/7/5	5 762670	-0.004942 2 474011
11	0.004/43	5.102017	4.4/4711

Atom	Х	Y	Ζ
Au	-3.109215	-0.679975	0.001046
Au	3.109237	-0.680032	-0.000420
Р	-5.164292	0.520445	0.002376
Р	5.164276	0.520454	-0.002351
С	-6.607863	-0.548095	-0.384240
С	-6.580706	-1.882053	0.054551
Н	-5.709469	-2.260211	0.582865
С	-7.661309	-2.727274	-0.197229
Н	-7.627592	-3.758215	0.143367
С	-8.773123	-2.253507	-0.897407
Н	-9.610416	-2.915518	-1.100792
С	-8.802820	-0.931477	-1.345530
Н	-9.662070	-0.561668	-1.898456
С	-7.725664	-0.080128	-1.091852
Н	-7.752226	0.943630	-1.452971
С	-5.545581	1.303222	1.620296
С	-4.476463	1.789235	2.390582
Н	-3.456600	1.671038	2.034020
С	-4.717431	2.408596	3.616847
Н	-3.882635	2.777523	4.206064
С	-6.024694	2.538567	4.091374
Н	-6.210420	3.012765	5.051254
С	-7.091665	2.048099	3.336195
Н	-8.109414	2.138744	3.705953
С	-6.855758	1.432307	2.105485
Н	-7.690109	1.044407	1.528976
С	-5.211741	1.880417	-1.232029
С	-4.561080	1.679453	-2.460655
Н	-4.029501	0.749474	-2.644857
С	-4.584780	2.672061	-3.439972
Н	-4.076843	2.506092	-4.385832
С	-5.246790	3.878414	-3.199215
Н	-5.257453	4.654434	-3.959761
С	-5.886648	4.089328	-1.976552
Н	-6.396132	5.029234	-1.782019
С	-5.871124	3.095850	-0.995246
Н	-6.364665	3.271418	-0.044175
С	6.608083	-0.548122	0.383284
C	6.580826	-1.881914	-0.056017
H	5.709391	-2.259919	-0.584115
C	7.661585	-2.727162	0.194982
H	7.627797	-3.757970	-0.146004
C	8.773659	-2.253596	0.894889
H	9.611077	-2.915633	1.097667
C	8.803456	-0.931744	1.343522
H	9.662909	-0.562098	1.896240
C	7.726140	-0.080361	1.090619
H	7.752785	0.943260	1.452117

Table S2. Gold Complex $[(\mu-1,7-C_2B_{10}H_{10}){Au(PPh_3)}_2]$

С	5.544693	1.303513	-1.620339
C	6.854661	1.433061	-2.105988
Н	7.689335	1.045313	-1.529844
C	7 089941	2 049105	-3 336688
Н	8 107529	2 140109	-3 706802
C	6.022548	2 539367	-4 091410
Н	6 207785	3 013764	-5 051285
C	4 715498	2 408934	-3 616431
Н	3 880377	2 777696	-4 205288
C	4 475157	1 789323	-2 390165
Н	3 455461	1 670781	-2.033243
C	5 212365	1 880186	1 232281
C	4 562484	1 678882	2 461269
Н	4 031132	0 748800	2.645605
C	4 586675	2 671277	3 440786
Н	4 079344	2 505046	4 386925
C	5 248396	3 877761	3 199876
Н	5 259435	4 653620	3 960580
C	5.887474	4.089010	1.976866
Н	6.396732	5.029015	1.782221
C	5.871460	3.095741	0.995353
Н	6.364405	3.271566	0.044021
С	-1.341898	-1.773556	0.000181
В	-0.000106	-1.190775	0.881088
Н	-0.000041	-0.142685	1.436690
В	-0.887335	-2.610328	1.434553
Н	-1.562024	-2.535373	2.410111
В	-1.431194	-3.495937	-0.000017
Н	-2.494737	-4.028628	-0.000169
В	-0.887352	-2.609785	-1.434307
Н	-1.562136	-2.534969	-2.409935
В	0.000126	-1.190492	-0.880486
Н	0.000065	-0.142236	-1.435776
С	1.341899	-1.773578	0.000237
В	0.887340	-2.610262	1.434463
Н	1.562140	-2.535763	2.410102
В	0.000024	-4.054957	0.892916
Н	0.000012	-5.058185	1.534008
В	-0.000071	-4.054673	-0.893214
Н	-0.000087	-5.057696	-1.534627
В	0.887319	-2.609892	-1.434403
Н	1.562002	-2.534663	-2.409945
В	1.431158	-3.495970	-0.000120
Н	2.494690	-4.028682	-0.000145

Atom	Х	Y	Ζ
Au	-3.657607	-0.037497	-0.010171
В	-0.740018	-0.504667	-1.427900
Н	-1.328249	-0.849612	-2.401232
В	-0.731575	-1.517665	0.025816
Н	-1.314246	-2.553430	0.043193
В	-0.753376	-0.449003	1.439042
Н	-1.350959	-0.756386	2.419144
В	-0.775216	1.224972	0.858531
Н	-1.388396	2.058868	1.442763
В	-0.767120	1.190562	-0.913193
Н	-1.374354	2.001142	-1.535151
С	-1.579406	-0.023586	-0.006981
С	-6.799378	-1.561310	-0.614754
С	-8.002876	-1.585983	-1.335390
Н	-8.518059	-0.658582	-1.566605
С	-8.537959	-2.801115	-1.767503
Н	-9.468229	-2.809664	-2.329064
С	-7.877922	-3.998592	-1.485718
Н	-8.293638	-4.942272	-1.828318
С	-6.676858	-3.981158	-0.772806
Н	-6.153228	-4.908918	-0.560350
С	-6.136020	-2.769507	-0.343238
Н	-5.191468	-2.758788	0.194418
С	-6.738307	1.336411	-1.049704
С	-6.037186	1.707023	-2.208753
Н	-5.095270	1.220873	-2.448886
С	-6.537524	2.705692	-3.044545
Н	-5.984829	2.986530	-3.936569
С	-7.734724	3.350579	-2.726592
Н	-8.118992	4.134578	-3.373468
С	-8.431968	2.994778	-1.570177
Н	-9.359169	3.500479	-1.314515
С	-7.937638	1.992879	-0.733226
Н	-8.479415	1.731037	0.170798
С	-6.744801	0.265622	1.672065
С	-7.935741	-0.340731	2.098464
Н	-8.471412	-1.013991	1.436019
С	-8.431344	-0.091003	3.379997
Н	-9.352156	-0.569297	3.702818
С	-7.744031	0.763021	4.244153
Н	-8.129040	0.951890	5.242540
С	-6.554377	1.365599	3.827787
Н	-6.009178	2.021854	4.500240
С	-6.052380	1.114840	2.551155
Н	-5.115639	1.569119	2.238720
Р	-6.041353	-0.003310	-0.003527
Au	3.657607	0.037491	0.010157

Table S3. Gold Complex $[(\mu-1, 12-C_2B_{10}H_{10}){Au(PPh_3)}_2]$

El	lectronic	Suppl	lementary	Informati	on for	Dalton '	Transact	ions
Tl	his journa	al is ©) The Roya	al Society	of Che	emistry	2009	

			n
В	0.740024	0.504652	1.427881
Н	1.328250	0.849595	2.401215
В	0.731575	1.517653	-0.025833
Н	1.314245	2.553419	-0.043211
В	0.753378	0.448992	-1.439057
Н	1.350960	0.756372	-2.419160
В	0.775221	-1.224983	-0.858544
Н	1.388396	-2.058879	-1.442779
В	0.767116	-1.190577	0.913177
Н	1.374334	-2.001166	1.535133
С	1.579406	0.023576	0.006965
С	6.799364	1.561376	0.614605
С	8.002856	1.586130	1.335248
Н	8.518039	0.658752	1.566557
С	8.537927	2.801310	1.767244
Н	9.468192	2.809922	2.328812
С	7.877884	3.998750	1.485333
Н	8.293585	4.942469	1.827843
С	6.676823	3.981237	0.772409
Н	6.153201	4.908982	0.559864
С	6.135999	2.769542	0.342960
Н	5.191452	2.758760	-0.194705
С	6.738316	-1.336298	1.049851
С	6.037204	-1.706774	2.208948
Н	5.095302	-1.220582	2.449051
С	6.537541	-2.705359	3.044841
Н	5.984853	-2.986094	3.936903
С	7.734727	-3.350299	2.726941
Н	8.118991	-4.134234	3.373898
С	8.431960	-2.994631	1.570480
Н	9.359149	-3.500374	1.314857
С	7.937627	-1.992818	0.733423
Н	8.479404	-1.731083	-0.170631
С	6.744815	-0.265785	-1.672032
С	7.935767	0.340511	-2.098476
Н	8.471444	1.013823	-1.436089
С	8.431378	0.090657	-3.379982
Н	9.352200	0.568907	-3.702839
С	7.744059	-0.763436	-4.244065
Н	8.129075	-0.952402	-5.242431
С	6.554392	-1.365957	-3.827655
Н	6.009189	-2.022266	-4.500052
С	6.052388	-1.115073	-2.551051
Н	5.115636	-1.569309	-2.238583
Р	6.041354	0.003312	0.003529

References

¹ Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q.

Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.