An old reaction in new media: Kinetic study of a Platinum(II) substitution reaction in ionic liquids

Supplementary Information

Isabel Correia^{a,b} and Tom Welton^a

 ^a Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
^b currently at Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovísco Pais, 1049-001 Lisbon, Portugal

Characterization of the ionic liquids

 $[C_4C_1im][NTf_2]$ – The ionic liquid was prepared according to a literature procedure.¹⁷ δ_{H} : (400 MHz, DMSO-*d*₆)/ppm 8.78 (1H, s, N₂C*H*), 7.40 and 7.35 (2H, m, 2NC*H*), 4.20 (2H, t, NC*H*₂(CH₂)₂CH₃), 3.86 (3H, s, NC*H*₃), 1.88 (2H, quintet, NCH₂C*H*₂CH₂CH₃CH₃), 1.35 (2H, sextet, NCH₂CH₂CH₂CH₃) and 0.95 (3H, t, N(CH₂)₃C*H*₃) m/z (FAB+): 558 ([(C₄C₁im)₂N(SO₂CF₃)₂]⁺, 45%) and 139 ([C₄C₁im]⁺, 100) m/z (FAB-): 280 ([N(SO₂CF₃)₂]⁻, 100%).

 $[C_4C_1py][NTf_2]$ – The ionic liquid was prepared according to a literature procedure. ¹⁷ δ_{H} : (400 MHz, DMSO-*d*₆)/ppm 3.56–3.36 (4H, m, N(C*H*₂)₂), 3.34–3.24 (2H, m, NC*H*₂(CH₂)CH₃), 2.99 (3H, s, NC*H*₃), 2.10 (4H, br. s, NCH₂(C*H*₂)₂CH₃), 1.70 (2H, m, NCH₂C*H*₂CH₂CH₃), 1.33 (2H, sextet, N(CH₂)₂C*H*₂CH₃) and 0.94 (3H, t, N(CH₂)₃C*H*₃) m/z (FAB+): 564 ([(C₄C₁py)₂N(SO₂CF₃)₂]⁺, 30%) and 142 ([C₄C₁py]⁺, 100%) m/z (FAB–): 280 ([N(SO₂CF₃)₂]⁻, 100%).

 $[C_4C_1py][OTf]$ – The ionic liquid was prepared according to a literature procedure. ¹⁷ δ_{H} : (400 MHz, DMSO-*d*₆)/ppm 3.55–3.35 (4H, m, N(C*H*₂)₂), 3.33–3.23 (2H, m, NC*H*₂(CH₂)CH₃), 2.97 (3H, s, NC*H*₃), 2.0 (4H, br. s, NCH₂(C*H*₂)₂CH₃), 1.70 (2H, m, NCH₂C*H*₂CH₂CH₃), 1.30 (2H, sextet, N(CH₂)₂C*H*₂CH₃) and 0.94 (3H, t, N(CH₂)₃C*H*₃) m/z (FAB+): 433 ([(C₄C₁py)₂(CF₃SO₃)]⁺, 5%) and 142 ([C₄C₁py]⁺, 100%) m/z (FAB–): 440 ([(C₄C₁py) (CF₃SO₃)₂]⁻, 5%) 149 [(CF₃SO₃)⁻, 100%].

 $[(C_1OC_2)C_1im][NTf_2]_The ionic liquid was donated by a colleague.$

 $δ_{\rm H}$: (400 MHz, DMSO-*d*₆)/ppm 9.10 (1H, s, N₂C*H*), 7.75 (2H, m, 2NC*H*), 4.35 (2H, t, NC*H*₂CH₂OCH₃), 3.87 (3H, s, NC*H*₃), 3.65 (2H, t, NCH₂CH₂OCH₃), 3.35 (3H, s, OC*H*₃) and 2.50 (2H, t, NC*H*₂CH₂O)

m/z (FAB+): 562 ({[(C_3OC_1) C_1im]₂([N(SO₂CF₃)₂]}⁺, 15%) 282 {[(C_3OC_1) C_1im]₂}²⁺, 10%) and 139 ([C_4C_1im]⁺, 100)

m/z (FAB-): 280 ([N(SO₂CF₃)₂]⁻, 100%).

Kinetic studies

Kinetic trace of the reaction $[Pt(dpma)Cl]^+ + SAc^- \leftrightarrow [Pt(dpma)SAc]^+ + Cl^-$ in $[C_4C_1py][NTf_2]$ at 25 °C. Concentrations of $[Pt(dpma)Cl]^+ = 0.99x10^{-3}$ M and KSAc = $39.0x10^{-4}$ M.

Plots of k_{obs} (s⁻¹) vs. [SAc⁻] (M) for [Pt(bpma)Cl]⁺ ~ 1 × 10⁻⁴ M at 25 °C

Fig S1 – In $[C_4C_1im][NTf_2]$

Fig S2 – In $[C_4C_1py][NTf_2]$

Fig S3 – In [C₄C₁py][OTf]

 $Fig \ S4-In \ [(C_1OC_2)C_1im][NTf_2]$

 $Fig\ S5-In\ H_2O$

Fig S6 – In DMSO

Fig S7 – In MeOH

Eyring Plots

Plots of ln (k_{obs}/T) vs. 1/T for $[Pt(bpma)Cl]^+ \sim 1 \times 10^{-4}$ M:

Fig S8 – In $[C_4C_1im][NTf_2]$; $[Pt]=9.00x10^{-5}M$ and $[SAc]=2.89x10^{-3}M$

Fig S9 – In $[C_4C_1py][NTf_2]$; $[Pt]=9.90x10^{-5}M$ and $[SAc]=1.95x10^{-3}M$

Fig S10 – In $[C_4C_1py][OTf]$; $[Pt]=1.09x10^{-4}M$ and $[SAc]=2.04x10^{-3}M$

Fig S11 – In $[(C_1OC_2)C_1im][NTf_2]; [Pt]=1.04x10^{-4}M \text{ and } [SAc]=2.08x10^{-3}M$

Fig S12 – In H₂O; [Pt]= 3.96×10^{-5} M and [SAc]= 1.06×10^{-3} M

Fig S13 – In DMSO; [Pt]=8.916x10⁻⁵M and [SAc]=1.99x10⁻³M

Fig S14 – In MeOH; [Pt]= 8.986×10^{-5} M and [SAc]= 4.27×10^{-3} M

Solvent	T (°C)	K_{obs} (×10 ²) / s ⁻¹
MeOH	20	0.755
$[SAc] = 4.27 \times 10^{-3} M$	25	1.04
$[Pt] = 8,98 \times 10^{-5} M$	30	1.51
	35	2.43
	40	3.26
H ₂ O	20	1.82
$[SAc] = 1.06 \times 10^{-3} M$	25	2.59
$[Pt] = 3.96 \times 10^{-5} M$	30	3.20
	35	4.51
	40	5.31
DMSO	20	0.959
$[SAc] = 1.99 \times 10^{-3} M$	25	1.45
$[Pt] = 8.91 \times 10^{-5} M$	30	1.93
	35	2.72
	40	3.75
$[(C_1OC_2)C_1im][NTf_2]$	20	1.39
$[SAc] = 2.08 \times 10^{-3} M$	25	1.89
$[Pt] = 1.04 \times 10^{-4} M$	30	2.62
	35	3.59
	40	4.78
$[C_4C_1im][NTf_2]$	20	1.55
$[SAc]=2.89 \times 10^{-3}M$	25	2.15
$[Pt]=9.00\times10^{-5}M$	30	2.93
	35	3.91
	40	5.25
$[C_4C_1py][NTf_2]$	20	0.491
$[SAc]=1.95 \times 10^{-3}M$	25	0.630
[Pt]=9.90 ×10 ⁻⁵ M	30	0.910
	35	1.36
	40	1.87
[C ₄ C ₁ py][OTf]	20	0.767
$[SAc] = 2.04 \times 10^{-3} M$	25	1.07
$Pt]=1.09 \times 10^{-4} M$	30	1.52
	35	2.30

Table S1 – k_{obs} at various temperatures-