Synthesis, structures and characterisations of truly homoleptic acetonitrile Ln³⁺ complexes in solid state and in solution[†]

Gabriella Bodizs,^a Ines Raabe,^b Rosario Scopelliti,^a Ingo Krossing,^b Lothar Helm*^a

^{*a*}Dr. Gabriella Bodizs, Dr. Rosario Scopelliti and Prof. Dr. Lothar Helm*, Institut des Sciences et Ingénieries Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), BCH, CH-1015, Lausanne, Switzerland, E-mail: lothar.helm@epfl.ch; Fax: +41 21 693 98 75; Tel: +41 21 693 98 76.

^bDr. Ines Raabe and Prof. Dr. Ingo Krossing, Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, D-79104 Freiburg i. Br., Germany.

Electronic supplementary information

IUPAC recommendations for NMR chemical shift measurements

In 2001 IUPAC recommended a unified scale for reporting the NMR chemical shifts of all nuclei relative to the ¹H resonance of tetramethylsilane (TMS). The unified scale is designed to provide a precise ratio, Ξ , of the resonance frequency of a given nuclide to that of the primary reference, the ¹H resonance of TMS in dilute solution (volume fraction, $\varphi < 1$ %) in chloroform. Thus, the chemical shifts of the X nuclei can be determined on the unified (TMS based) scale just by measuring the resonance frequency of the sample and using a predetermined reference frequency for the nuclide in question. Therefore, only one (sample) tube is required and no reference substance needs to be added. The predetermined reference frequency is obtained by measuring the proton resonance of TMS under similar condition to the sample (with the same lock compound) in a single experiment for the spectrometer being used. Then, the frequency of the usual secondary reference for the nucleus X can be calculated using the predetermined value of TMS, Eq. S-1:

$$\nu_{X,ref} = \left(\nu_{TMS} \Xi_{ref}\right) / 100$$
 S-1

 $v_{X,ref}$: resonance frequency of a given nuclei (X) with respect to TMS

 v_{TMS} : proton resonance frequency of TMS

 Ξ_{ref} : frequency ratio between the secondary reference frequency and that of the ¹H in TMS

The chemical shift of a given X nuclei in the sample can be easily derived from Eq. S- 2:

$$\delta_{X,sample} = \frac{\nu_{X,sample} - \nu_{X,ref}}{\nu_{X,ref}} 10^6$$
S-2

 $v_{X,sample}$: resonance frequency of a given nuclei (X) in the sample

 $\delta_{X,sample}$: chemical shift of a given nuclei (X) in the sample with respect to TMS (in ppm)

If the lock substance in the sample solution is not the same as that of the reference solution, a lock correction must be applied, Eq. S-3:

$$\delta_{X,sample} = \delta_{X,observed} + \left(\delta_{sample}^{lock} - \delta_{reference}^{lock}\right)$$
S-3

Electronic Supplementary Information for Dalton Transactions. 3 – This journal is $\mbox{$\odot$}$ The Royal Society of Chemistry 2009

nucleus	spin I	natural abundance	[1]	γ	reference compound
		(%)	(%)	$(10^7 \text{ rad s}^{-1} \text{ T}^{-1})$	
$^{1}\mathrm{H}$	1/2	99.989	100	26.75	CH ₃ Si
¹³ C	1/2	1.07	25.145	6.73	CH ₃ Si
¹⁴ N	1	99.63	7.226	1.93	CCl ₃ F
¹⁹ F	1/2	100	94.094	25.16	CH ₃ NO ₂
²⁷ Al	5/2	100	26.057	6.98	Al(NO ₃) ₃

Table S1. NMR properties of selected nuclei.

Table S2 Crystallographic details of the partial structure determinations for $[Nd(CH_3CN)_9][Al(pftb)_4]_3 \cdot 4CH_2Cl_2$ (<u>1</u>·4CH₂Cl₂), $[Gd(CH_3CN)_9][Al(pftb)_4]_3 \cdot 3CH_2Cl_2$ (<u>3</u>·3CH₂Cl₂), and $[Dy(CH_3CN)_9][Al(pftb)_4]_3 \cdot 3CH_2Cl_2 \cdot CH_3CN$ (<u>4</u>·3CH₂Cl₂·CH₃CN).

	$\underline{1}$ ·4CH ₂ Cl ₂	$\underline{3}$ ·3CH ₂ Cl ₂	$4 \cdot 3 CH_2 Cl_2 \cdot CH_3 CN$
Empirical formula	$C_{70}H_{35}Al_3Cl_8F_{108}N_9O_{12}Nd$	$C_{69}H_{33}Al_3Cl_6F_{108}N_9O_{12}Gd$	$C_{71}H_{36}Al_3Cl_6F_{108}N_{10}O_{12}Dy$
Fw	3754.85	3682.81	3729.11
crystal size [mm]	0.98 x 0.32 x 0.14	0.49 x 0.23 x 0.21	0.61 x 0.26 x 0.23
crystal system	orthorhombic	orthorhombic	orthorhombic
space group	$Pna2_1$	$Pna2_1$	$Pna2_1$
a [Å]	28.308(10)	28.3168(18)	28.161(5)
<i>b</i> [Å]	29.321(9)	29.3210(16)	29.301(5)
c [Å]	15.203(3)	15.1241(10)	15.2811(16)
α[°]	90	90	90
β [°]	90	90	90
γ[°]	90	90	90
$V[nm^3]$	12.619(6)	12.557(2)	12.609(3)
Z	4	4	4
$\rho_{\text{calc}} [\text{Mg m}^{-3}]$	1.976	1.006	1.908
μ [mm ⁻¹]	0.817	0.448	0.953
abs. correction	none	none	none
F (000)	7284	3680	7012
index range	-29 ≤h≤ 29	-38 ≤ <i>h</i> ≤ 38	-32 ≤h≤ 32
	-29 ≤k≤ 30	-39 ≤k≤ 39	-34 ≤k≤ 34
	-15 ≤ <i>l</i> ≤ 15	-17 ≤ <i>l</i> ≤17	-17 ≤ <i>l</i> ≤ 17
Max 2θ	21.51	29.16	24.51
<i>T</i> [K]	100(2)	100(2)	100(2)
diffractometer type	Bruker APEX II	Bruker APEX II	Bruker APEX II
unique reflns. $[I > 2\sigma(I)]$	7603	7377	13586
Data / restraints / parameters	7603 / 592 / 331	7737 / 454 / 193	13586 / 537 / 295
GOOF	1.274	0.770	1.527
final R1 $[I > 2\sigma(I)]$	0.1578	0.1106	0.1561
final wR2	0.3834	0.2683	0.4095
largest residual peak [e Å ⁻³]	2.168	1.574	2.315
largest residual hole [e Å-3]	-0.910	-1.558	-1.407

Table S3 Comparison of the IR and Raman spectra of <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u> and <u>5</u> with those of free CH_3CN and of the $[Al(pftb)_4]^-$ anion in $[NEt_4][Al(pftb)_4]$ and $Li[Al(pftb)_4]$. Bands assigned to the $[Ln(CH_3CN)_n]^{3+}$ cations are marked in bold (vw = very weak, w = weak, mw = medium weak, m = medium, ms = medium strong, s = strong, vs = very strong, sh = shoulder).

	<u>1</u>		<u>2</u>		<u>3</u>		<u>4</u>		<u>5</u>	[Al(pftt [NEt ₄][Al	$(pftb)_4]^{-1}$ in	[Al(pftb Li[Al(p	b) ₄] [−] in ftb) ₄] ⁴⁰	С	H ₃ CN	assignment
IR	Raman	IR	Raman	IR	Raman	IR	Raman									
-	233	-	234	-	236	_	233	-	235	228 (w)	234	-	234	-	-	C-C-
	(w)		(w)		(mw)											
289	288	283	288	283	291	287	287	289	291	285 (mw)	289	289	297	-	-	C–C
(w)	(w)		(w)	(w)	(w)											
315	323	315	322	315	324	315	323	315	324	316 (m)	323	-	316	-	-	C–C, Al–O
(m)	(w)	(w)	(m)	(w)	(ms)	(m)	(w)	(m)	(m)		(ms)		(w)			
327	-	-	-	-	-	331	-	328	-	331 (w)	-	326	327	-	-	C–C, C–F,
(w)						(vw)		(w)				(w)	(m)			Al–O
355	-	-	-	-	-	-	-	355	-	-	-	-	-	-	383	C-C-N
(vw)								(vw)							(mw)	
-	368	-	368	-	370	368	368	370	370	367 (mw)	368	369	363	-	-	C–C, C–F,
	(w)		(w)		(w)	(w)	(w)	(w)	(w)		(w)	(w)	(w)			Al–O
376	-	376	-	376	-	380	-	375	-	377 (mw)	-	-	390	-	-	С–С, С–О
(w)		(w)		(w)		(w)		(w)					(w)			~ ~
399	408	-	409	404	417	417	414	407	418	-	-	-	-	-	-	C-C-N
(m)	(w)		(mw)	(w)	(m)	(vw)	(w)	(w)	(m)							~ ~ ~ ~
447	-	447	-	447	-	449	-	448	-	446 (ms)	-	-	-	-	-	С–С, С–О
(ms)		(m)		(mw)		(ms)		(ms)								
-	-	-	-	-	-	-	-	-	-	-	-	464	-		-	-
									- 10	/ >		(m)				~ ~ ~ ~ ~
537	538	537	538	537	540	537	539	537	549	537 (m)	538	539	539	-	-	С–С, С–О
(ms)	(w)	(mw)	(m)	(w)	(w)	(ms)	(w)	(ms)	(w)		(w)	(m)	(mw)			
-	-	-	-	-	-	-	-	-	-	-	-	546	-	-	-	-
- (1	- ()	1	- (1	- (1	- (0	1	- ()	- (1	- ()			(mw)				
561	562	561	561	561	563	561	562	561	563	562 (mw)	563	562	-	-	-	AI-0, C-C
(ms)	(w)	(w)	(mw)	(vw)	(w)	(ms)	(w)	(ms)	(w)		(w)	(mw)				
572	572	572	572	572	571	572	572	572	572	571	-	572+582	573	-	-	AI0, CC
(m)	(sh, w)	(vw,	(sh, w)	(vw,	(sh, w)	(mw)	(sh, w)	(m)	(sh, w)	(w)		(m)	(mw)			
		sh)		sh)												

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Table 4 continued Comparison of the IR and Raman spectra of $\underline{1}, \underline{2}, \underline{3}, \underline{4}$ and $\underline{5}$ with those of free CH₃CN and of the [Al(pftb)₄]⁻ anion in [NEt₄][Al(pftb)₄] and Li[Al(pftb)₄]. Bands assigned to the [Ln(CH₃CN)_n]³⁺ cations are marked in bold (vw = very weak, w = weak, mw = medium weak, m = medium, ms = medium strong, s = strong, vs = very strong, sh = shoulder).

	<u>1</u>		2		<u>3</u>		<u>4</u>		<u>5</u>	[Al(pf	$[tb)_4]^-$ in	[Al(pftb	$(b)_4]^-$ in	CH	I ₃ CN	assignment
IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	INE4][P	Raman	LI[AI(p) IR	Raman	IR	Raman	
727	Raman	727	Raman	727	Raman	727	Raman	727	Raman	727	Raman	726	720	IK	Raman	C C C O
(ms)	-	(s)	-	(ms)	-	(ms)	-	(ms)	-	(2)	-	(s)	(s)	-	-	C-C, C-O
(1115)	746	(3)	746	(IIIS)	748	(IIIS)	746	(IIIS)	748	(3)	747 (ms)	(3)	(3)			
-	(ms)	-	(1)	-	(a)	-	(ms)	-	(ms)	-	/4/ (1115)	(ms)	(r)	-	-	-
755	(1115)	756	(5)	756	(5)	756	(IIIS)	756	(IIIS)	756		(115) 756+760	(3)			C - C - C - O
(100)	-	(101)	-	(130	-	(100	-	(100	-	(mw)	-	(m)	-	-	-	C-C, C-O
(((w))	709	(()))	707	(vw)	700	(()))	709	(()))	700	(IIIW)	708	(11)	801			
-	(mg)	-	(9)	-	(9)	-	(ma)	-	(mg)	-	(9)	(m)	601 (m)	-	-	-
027	(IIIS)	0 22	(8)	022	(8)	822	(IIIS)	827	(IIIS)	922 (m)	(8)	(111)	(w) 842			
032 (mm)	-	852 (m)	-	633 (m)	-	852 (m)	-	032 (mm)	-	833 (III)	834 (w)	844 (ma)	845 (m)	-	-	AI=0, C=
(mw)		(w)		(w)		(w)		(mw)			(w)	(IIIS)	(w)			
-	-	-	-	-	-	-	-	-	-	-	-	803	-	-	-	AI-0, C-
022	026	025	020	024	0.42	027	020		0.43			(ms)		010	022	
933	936	935	938	934	942	937	938	-	942	-	-	936	-	918	922	C-C
(vw)	(vw)	(w)	(w)	(vw)	(w)	(vw)	(vw)		(w)			(ms)		(wv)	(m)	
-	-	-	-	-	-	-	-	-		-	-	964	-	-	-	0-0
070	070	070	072	070	077	070		070	077	072	070 ()	(vs)	070			
9/2	978	972	973	972	977	972	-	972	9//	973	978 (mw)	976	9/8	-	-	C–C, C–F
(vs)	(w)	(vs)	(vw)	(vs)	(vw)	(vs)		(vs)	(w)	(s)		(vs)	(w)	1000		нам
-	-	-	-	-	-	-	-	-	-	-	-	-	-	1039		H-C-N
			1105								1100 ((w)		
-	-	-	1135	-	-	-	-	-	-	-	1139 (mw)	-	1113	-	-	C–C, C–F
			(vw)										(w)			
1168	-	1170	-	1171	-	1171	-	-	-	-	1173 (mw)	1184	1171	-	-	C–C, C–F
(m)		(ms)		(m)		(m)						(ms)	(w)			
1218	-	1216	1218	1218	-	1217	-	1217	-	1217 (vs)	-	1225 (vs)	1214	-	-	C–C, C–F
(vs)		(vs)	(vw)	(vs)		(vs)		(vs)					(mw)			

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Table 4 continued Comparison of the IR and Raman spectra of <u>1</u>, <u>2</u>, <u>3</u>, <u>4</u> and <u>5</u> with those of free CH₃CN and of of the $[Al(pftb)_4]^-$ anion in $[NEt_4][Al(pftb)_4]$ and $Li[Al(pftb)_4]$. Bands assigned to the $[Ln(CH_3CN)_n]^{3+}$ cations are marked in bold (vw = very weak, w = weak, mw = medium weak, m = medium, ms = medium strong, s = strong, vs = very strong, sh = shoulder).

	<u>1</u>		2		<u>3</u>		<u>4</u>		<u>5</u>	[Al(p [NEt ₄][/	$ftb)_4]^-$ in Al(pftb)_4 $]^{40}$	[Al(p: Li[Al(ftb) ₄] ⁻ in [pftb) ₄] ⁴⁰	СН	₃ CN	assignment
IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	
1244	1245	1244	1244	1245	-	1245	-	1245	-	1240	1235	1243	1250	-	-	C–C, C–F
(vs)	(w)	(vs)	(w)	(vs)		(vs)		(s)		(s)	(mw)	(s)	(mw)			
-	-	-	-	-	-	-	-	-	-	1245	-	-	-	-	-	C–C, C–F
										(s)						~ ~ ~ -
1275	1274	1275	1273	1275	1276	1275	1271	1275	1276	1274	1274 (mw)	1270	1281	-	-	С–С, С–Ғ
(S)	(w)	(S)	(W)	(S)	(W)	(VS)	(mw)	(S)	(W)	(VS)	1200 (m)	(S)	(mw)			СССБ
1299 (ms)	-	1299 (ms)	1307 (w)	1299 (ms)	1308	1299	1308	1299 (ms)	1308	1298 (S)	1300 (m)	1297	-	-	-	C−C, C−F
1353	_	1353	(w)	1353	(w)	1353	(w)	1353	(w)	1353	_	1353	1337	_	_	C-C C-F
(m)		(m)		(m)		(m)		(m)		(ms)		(ms)	(mw)			0 0, 0 1
-	1377	1377	1377	-	1379	1376	1377	-	1379	-	-	-	-	1376	1377	Н-С-Н,
	(m)	(vw)	(m)		(m)	(vw)	(m)		(m)					(ms)	(w)	H-C-N
-	-	-	1416	-	1420	-		-	1420	-	-	-	-	1444	1448	Н-С-Н
			(vw)		(vw)				(vw)					(ms)	(w)	
2281	2284	2283	2285	2283	2290	2284	2286	2286	2290	-	-	-	-	2253	2255	C-N
(m)	(vs)	(m)	(vs)	(mw)	(vs)	(m)	(vs)	(m)	(vs)					(vs)	(s)	C N
2310	2312	2311	2313	2312	2318	2313	2314	2314	2318	-	-	-	-	2292	2295	C-N
(W) 2055	(MS) 2056	(W) 2056	(S) 2056	(VW) 2055	(S) 2057	(W) 2055	(ms) 2055	(W) 2055	(ms)					(MW) 2045	(W) 2045	СН
2933 (vw)	2930 (s)	2930 (vw)	2930 (vs)	2933 (vw)	2937 (vs)	2933 (vw)	2933 (w)	2933 (vw)	-	-	-	-	-	2943 (vw)	2943 (vs)	С-п
-	3022	-	3021	-	3023	(,,,,)	3024	-	3023	_	_	_	-	3002	3004	С-Н
	(mw)		(w)		(mw)		(vs)		(vs)					(vw)	(w)	

[Ln]	[anion]/[Ln]	$\Delta v_{1/2}$	$1/T_{2obs}$
(mmol kg ⁻¹)		(Hz)	(s ⁻¹)
	3	6.3	20
16.00	6	8.0	25
	9	6.3	20
	[Ln] (mmol kg ⁻¹) 16.00	[Ln] [anion]/[Ln] (mmol kg ⁻¹) 3 16.00 6 9	[Ln] [anion]/[Ln] Δv _{1/2} (mmol kg ⁻¹) (Hz) 3 6.3 16.00 6 8.0 9 6.3

Table S5. ¹⁹F-NMR data measured on $[Nd(CH_3CN)_9][Al(OC(CF_3)_3)_4]_3$ <u>1</u> at 376 MHz, 25°C in CH₃CN (5 mm NMR tubes).

Table S6. ¹⁹F-NMR data measured on $Eu(CH_3CN)_3(CF_3SO_3)_2$ and $[Eu(CH_3CN)_9][Al(OC(CF_3)_3)_4]_2$ <u>2a</u> at 376 MHz, 25°C in CH₃CN (5 mm NMR tubes).

Sample	[Ln] (mmol kg ⁻¹)	[anion]/[Ln]	Δv _{1/2} (Hz)	$1/T_{2obs}$ (s ⁻¹)
	(3	316	991
Eu(CH ₃ CN) ₃ (CF ₃ SO ₃) ₂	9.43	6	282	887
		9	253	795
		3	11.4	36
[Eu(CH ₃ CN) ₉][Al(OC(CF ₃) ₃) ₄] ₂ <u>2a</u>	10.08	6	11.3	36
		9	10.4	33

Table S7. ¹⁹F-NMR data measured on $Gd(CH_3CN)_3(CF_3SO_3)_3$ and $[Gd(CH_3CN)_9][Al(OC(CF_3)_3)_4]_3$ **<u>3</u>** at 376 MHz, 25°C in CH₃CN (5 mm NMR tubes).

Sample	[Ln]	[anion]/[Ln]	$\Delta v_{1/2}$	$1/T_{2obs}$
	(mmol kg ⁻¹)		(Hz)	(s ⁻¹)
		3	817	2568
Gd(CH ₃ CN) ₃ (CF ₃ SO ₃) ₃	12.51	6	497	1561
		9	385	1210
		3	46	143
	13.37	6	51	159
		9	53	167
$[Gd(CH_3CN)_9][Al(OC(CF_3)_3)_4]_3 3$		3	45	140
	8.56	6	50	158
		9	45	142
	1.35	3	26	82

Sample	[Ln]	[anion]/[Ln]	$\Delta v_{1/2}$	1/T _{2obs}
	(mmol kg ⁻¹)		(Hz)	(s ⁻¹)
	78.20	3	6.9	22
$[Dy(CH_3CN)_9][Al(OC(CF_3)_3)_4]_3 4$		3	6.9	22
	44.67	6	6.5	20
		9	8.5	27
	27.87	3	5.7	18

Table S8. ¹⁹F-NMR data measured on $[Dy(CH_3CN)_9][Al(OC(CF_3)_3)_4]_3$ <u>4</u> at 376 MHz, 25°C in CH₃CN (5 mm NMR tubes).

Table S9. ¹⁹F-NMR data measured on $[Tm(CH_3CN)_8][Al(OC(CF_3)_3)_4]_3$ **5** at 376 MHz, 25°C in CH₃CN (5 mm NMR tubes).

Sample	[Ln] (mmol kg ⁻¹)	[anion]/[Ln]	Δv _{1/2} (Hz)	1/T _{2obs} (s ⁻¹)
	130	3	6.8	21
[Tm(CH ₃ CN) ₈][Al(OC(CF ₃) ₃) ₄] ₃ <u>5</u>		3	5.9	18
	70.72	6	8.0	25
		9	8.2	26
	18.11	3	4.8	15