

(1)

Magnetic Field H (Gauss)

(4)

Fig. 1S X-Band ESR spectra of complexes 1, 2, and 4 in the solid state at room temperature

(3)

Fig. 2S Absorption spectra of 3.85×10^{-5} M complexes **1**, **2**, **3** and **4** in the presence of increasing amounts of CT-DNA at room temperature in Tris-HCl / NaCl buffer (pH = 7.2). Arrows indicate the change in absorbance upon increasing the DNA concentration. Insert: Plot of $(\epsilon_a - \epsilon_f) / (\epsilon_b - \epsilon_f)$ versus [DNA] for the titration of DNA to Cu(II) complexes.

(4)

complex		λ_{max}	change in	Δε	red shift
		(nm)	absorbance	(%)	(nm)
[Cu(1,4-tpbd)Br ₂]	1	205	hypochromism	55	16
$\left[Cu_{2}(1,4\text{-tpbd})(H_{2}O)_{4}\right]^{4+}$	2	206	hypochromism	61	16
$[Cu_2(1,4-tpbd)(1,10-phen)_2(DMF)_2]^{4+}$	3	208	hypochromism	41	19
$[Cu_2(1,4-tpbd)(2,2'-bpy)_2(ClO_4)_2]^{2+}$	4	227	hypochromism	49	5

Table 1S Absorption spectral properties of copper (II) complexes bound to CT-DNA.

Fig. 3S Fluorescence quenching curves of EB bound to CT-DNA by complexes 1 (0-4.46 \times 10⁻⁵ M), 2 (0-4.46 \times 10⁻⁵ M), 3 (0-3.85 \times 10⁻⁵ M) and 4 (0-4.76 \times 10⁻⁵ M). The dash line shows the intensity in the absence of complexes. Inset: Plot of I₀ / I versus [complex].

Fig. 4S Cyclic voltammograms of complexes 1, 2, 3 and 4 in absence (solid line) and presence (dash line) of CT-DNA in 10 mM Tris–HCl / 50 mM NaCl buffer (pH = 7.2). Scan rate: 100 $\text{mV}\cdot\text{s}^{-1}$.

Complex	$E_{\rm pa}({\rm mV})$	$E_{\rm pc}({\rm mV})$	$E_{1/2}({ m mV})$	$\Delta E (mV)^*$
1	-28, -39	-160, -137	-94, -88	6.0
2	113, 166	-135, -181	-11, -7.5	3.5
3	-24, -20	-157, -159	-90.5, -89.5	1.0
4	-99, -109	-281, -268	-190, -188.5	1.5

Table 2S Electrochemical data for complexes 1, 2, 3, 4 in the absence and presence of CT-DNA

* ΔE indicates the positive shifts for the four copper(II) complexes in the absence and presence of CT-DNA. $\Delta E = (E_{pa} + E_{pc}) / 2$, where E_{pa} and E_{pc} are anodic and cathodic peak potentials. $\Delta E = E_{pa} - E_{pc}$, i_{pa} and i_{pc} are anodic and cathodic peak currents.

Fig. 5S Gel electrophoresis diagrams showing the cleavage of pBR322 DNA ($0.1 \ \mu g / \mu L$) at different complex concentrations in Tris-HCl / NaCl buffer (pH = 7.2) and 37 for 3 h. (1) Lane 1: DNA control; Lane 2-6: DNA + **1** (0.005, 0.02, 0.035, 0.1, 0.2 mM), respectively; (2) Lane 1: DNA control; Lane 2-6: DNA + **2** (0.005, 0.02, 0.035, 0.1, 0.15 mM), respectively; (3) Lane 1: DNA control; Lane 2-6: DNA + **3** (0.005, 0.02, 0.035, 0.1, 0.2 mM), respectively; (4) Lane 1: DNA control; Lane 2-6: DNA + **4** (0.005, 0.02, 0.035, 0.1, 0.2 mM), respectively; (4) Lane 1:

Fig. 6S Time-dependence of pBR322 DNA cleavage by complexes in Tris-HCl / NaCl buffer (pH = 7.2) at 37 (1) Lane 1: DNA control (4 h); Lane 2-7: DNA + 0.4 mM **1** (0, 0.5, 1, 2, 3, 4 h), respectively; (2) Lane 1: DNA control (3 h); Lane 2-6 DNA + 0.15 mM **2** (0 h, 0.5 h, 1 h, 2 h, 3 h), respectively; (3) Lane 1: DNA control (3 h); Lane 2-6 DNA + 0.15 mM **3** (0 h, 0.5 h, 1 h, 2 h, 3 h), respectively; (4) Lane 1: DNA control (3 h); Lane 2-6 DNA + 0.1 mM **4** (0 h, 0.5 h, 1 h, 2 h, 3 h), respectively.

Fig. 7S Cleavage of pBR322 DNA $(0.1\mu g / \mu L)$ at room temperature for 3 h. (1) Lane 1: DNA control; Lane 2: DNA + 0.4 mM **1** in nitrogen atmosphere; Lane 3: DNA + 0.4 mM **1** in air; (2) Lane 1: DNA control; Lane 2: DNA + 0.035 mM **2** in N₂ atmosphere; Lane 3: DNA + 0.035 mM **2** in air; (3) Lane 1: DNA control; Lane 2: DNA + 0.05 mM **3** in N₂ atmosphere; Lane 3: DNA + 0.05 mM **3** in air; (4) Lane 1: DNA control; Lane 2: DNA + 0.05 mM **4** in N₂ atmosphere; Lane 3: DNA + 0.05 mM **4** in air.

Fig. 8S Kinetics for the cleavage of plasmid pBR322 DNA by **1**, **2**, **3** and **4** in Tris-HCl / NaCl buffer (pH = 7.2) at 37 for 3h.