Unsupported Au(I)…Cu(I) interactions: influence of nitrile ligands and aurophilicity on the structure and luminescence.

Eduardo J. Fernández,^a Antonio Laguna,^b José M. López-de-Luzuriaga,*^a Miguel Monge,^a Manuel Montiel,^a M. Elena Olmos^a and María Rodríguez-Castillo^a

^a Departamento de Química, Universidad de La Rioja, Grupo de Síntesis Química de La Rioja, UA-CSIC. Complejo Científico-Tecnológico, 26004-Logroño, SPAIN. Fax: +34 941 299 621.
Tel: +34 941 299 644; E-mail: miguel.monge @unirioja.es

^b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009-Zaragoza, SPAIN.

ELECTRONIC SUPPLEMENTARY INFORMATION

Figure S2. Molecular orbitals involved in the theoretical excitations for complex 2.

MOST IMPORTANT SINGLET EXCITATIONS FOR COMPLEX 2 1 singlet a excitation Excitation energy / eV: Excitation energy / nm: 2.570561103936059 482.3236600624778 Oscillator strength: 0.6808400617238028E-01 mixed representation: Dominant contributions: occ. orbital energy / eV virt. orbital energy / eV |coeff.|^2*100 318 a -5.23 319 a -2.20 95.9 2 singlet a excitation
 Excitation energy / eV:
 2.637679549127771

 Excitation energy / nm:
 470.0504428123861
 Oscillator strength: 0.1097800516171850 mixed representation: Dominant contributions: occ. orbital energy / eV virt. orbital energy / eV |coeff.|^2*100 318 a -5.23 320 a -2.16 95.3 4 singlet a excitation Excitation energy / eV: 2.867950581709468 Excitation energy / nm: 432.3095551129280 Oscillator strength: mixed representation: 0.2176986889319306E-01 Dominant contributions: occ. orbital energy / eV virt. orbital energy / eV |coeff.|^2*100 318 a -5.23 322 a -1.85 97.2 11 singlet a excitation Excitation energy / eV: Excitation energy / nm: 3.285136179811383 377.4097547870509 Oscillator strength: mixed representation: 0.1075028324213863E-01 Dominant contributions: occ. orbital energy / eV virt. orbital energy / eV |coeff.|^2*100 -5.84 320 a -2.16 90.2 315 a
 17 singlet a excitation

 Excitation energy / eV:
 3.499534458819486

 Excitation energy / nm:
 354.2878216101136
 17 singlet a excitation Oscillator strength: mixed representation: 0.2083390723691779E-01 Dominant contributions: occ. orbital energy / eV virt. orbital energy / eV |coeff.|^2*100
 313 a
 -6.19
 320 a
 -2.16

 312 a
 -6.23
 319 a
 -2.20

 313 a
 -6.19
 319 a
 -2.20
 49.9 16.6 14.2

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

18 si	inglet a excitat	cion						
Excitation energy / eV: xcitation energy / nm:			3.508564796640119 353.3759562462646					
Osci n	illator strength mixed representa	n: ation:			0.268511	6268890	082E-01	
Domi occ.	inant contributi orbital nergy 312 a 312 a 313 a	ions: / eV -6.23 -6.23 -6.19	virt.	orbital 319 a 320 a 319 a	energy	/ eV -2.20 -2.16 -2.20	coeff.	2*100 52.9 16.5 10.2
25 si Excit Excit	i nglet a excitat tation energy / tation energy /	eV: nm:			3.672948 337.5605	34867010 53060746	009 564	
Osci n	illator strength mixed representa	1: ation:			0.506975	57280015	5828E-01	
Domi	inant contributi	lons:						
occ.	orbital energy 318 a 318 a	/ eV -5.23 -5.23	virt.	orbital 323 a 325 a	energy	/ eV -1.19 -0.96	coeff.	^2*100 88.4 9.9
27 si Excit Excit	a nglet a excitat tation energy / tation energy /	eV: nm:			3.696245 335.4328	59800124 38156934	112 184	
Osci n	llator strength mixed representa	1: ation:			0.296646	51032832	2548	
Domi occ.	inant contributi orbital energy 318 a 318 a	ions: / eV -5.23 -5.23	virt.	orbital 325 a 323 a	energy	/ eV -0.96 -1.19	coeff.	^2*100 78.4 10.7
28 singlet a excitation Excitation energy / eV: Excitation energy / nm:			3.715930681121008 333.6559657487077					
Oscillator strength: mixed representation:					0.1524076366151150E-01			
Domi occ.	nant contributi orbital energy 312 a 312 a	ions: / eV -6.23 -6.23	virt.	orbital 320 a 321 a	energy	/ eV -2.16 -1.89	coeff.	[^] 2*100 41.7 24.7

Structural optimisation of model system [AuCu(C₆F₅)₂(N≡CH)₂] at DFT level.

The optimization was performed using the Gaussian 03 package program.¹ The molecular geometry of model system $[AuCu(C_6F_5)_2(N=CH)_2]$ (Cs symmetry) was optimized at DFT level of theory using the B3LYP functional.(Figure S3) The following basis set combination was employed: for the metals, the 19-VE pseudopotentials from Stuttgart and the corresponding basis sets² augmented with two f polarization functions were used.³ The atoms C, F and N were treated by Stuttgart pseudopotentials,⁴ including only the valence electrons for each atom. For these atoms double-zeta basis sets of reference 4 were used, augmented by d-type polarization functions.⁵ For the H atom, a double-zeta, plus a p-type polarization function was used.⁶ The results are given in Table S1.

Figure S3. Optimized a simplified model system $[AuCu(C_6F_5)_2(N=CH)_2]$ at DFT-B3LYP level of theory and using a C_s symmetry.

	Complex 1	Complex 2	Complex 3	$[AuCu(C_6F_5)_2(N\equiv CH)_2]$
Au-Cu	2.93	2.61, 2,62	2.67	2.60
Au-C	2.04, 2.03	2.07, 2.06	2.05, 2.03	2.12, 2.06
Cu-N	1.92, 1.86	1.87, 1.87	1.87, 1.87	1.95, 1.95
Cu…C _{ipso}	2.89, 4.11	2.72, 3.77	2.64, 3.98	2.24, 4.15
C-Au-C	179.0	176.8	176.1	178.9
N-Cu-N	151.3	155.2	155.9	130.9
C _{ipso} -Au-Cu	110.5, 68.8	107.0, 70.0	114.8, 66.4	125.6, 55.5

Table S1. Selected structural parameters (distances in Å and angles in deg) for complexes **1-3** and the optimised model system $[AuCu(C_6F_5)_2(N\equiv CH)_2]$ (C_s symmetry)

References:

[1] Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, **2004**.

[2] Andrae, D.; Häusserman, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.

[3] Pyykkö, P.; Runeberg, N.; Mendizabal, F. Chem. Eur. J. 1997, 3, 1451.

[4] Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 80, 1431.

[5] Huzinaga, S. *Gaussian Basis Sets for Molecular Calculations*; Elsevier: Amsterdam, 1984; p16.

[6] Huzinaga S. J. Chem. Phys. 1965, 42, 1293.