Supporting Information

Role of the orientation of -OH groups on sensitivity and selectivity of the interaction of M^{2+} with ribosyl- and galctosyl-imino-conjugates: Solution recognition studies of M^{2+} in MeOH and selective recognition of Cu^{2+} in HEPES buffer, and first crystal structure determination of dinuclear-Cu(II) complexes based on both the glyco-imino-conjugates

Nitin K. Singhal,^a Atanu Mitra,^a G. Rajsekhar,^a Mobin M. Shaikh,^a Subodh Kumar,^a Philippe Guionneau^b and Chebrolu P. Rao^{a,*}

^aBioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India. E-mail: <u>cprao@iitb.ac.in</u>

^bInstitut de Chimie la Matiere Condensee de Bordeaux, UPR 9048 CNRS 87 Av. Dr. A Schweitzer, 33608 Pessac Cedex, France

SI 01 Synthesis and characterization of L₁, L₂ and L₃

N-(O-hydroxynaphthalen-1-yl)-\beta-D- ribopyranosylamine (L₁): To an ethanolic suspension of crude β -D-ribopyranosyl-C1-NH₂ (1.325g, 8.83 mmol), α -hydroxynaphthaldehyde (1.549 g, 9 mmol) was added and then reaction mixture was stirred for 12 hrs. The solid separated from clear solution was filtered and washed with cold ethanol until the washings were free from impurities.

N-(2-hydroxybenzylidine)- β- **D-galactopyranosylamine** (L₂) to a suspension of β-Dgalactopyranosyl-C1-deoxy-C1-amine (galactosyl-C1-NH₂, 3.86 g, 20 mmol) in 45 ml ethanol, salicylaldhyde (R'-CHO, 2.2 ml, 20.96 mmol) was added and the reaction mixture was allowed to reflux for 6 hrs. During the course of reflux, yellow solid was formed. The reaction mixture was allowed to cool at room temperature and was left as such overnight. Some more solid was formed which was then separated by filtration and washed with a small portion of methanol and then with petroleum ether. The filtrate was concentrated to dryness and dichloromethane as added to dissolve the pasty mass. To that petroleum ether was added to result in a second crop of solid. Yield: 5.2g, 85%; IR (KBr): 3394(b) $\nu_{(O-H)}$ and $\nu_{(N-H)}$, 2938(S), 2935(S) and 2920(S) $\nu_{(C-H)}$, 1631(S) $\delta_{(CH=N)}.cm^{-1}$; ¹HNMR (DMSO-d₆): δ 3.250-3.780(m, 5H, C2-H, C3-H, C4-H, C5-H), 4.363-4.384(d, H, ³J_{CH1-CH-2},8.239HzC1-H),4.538-5.146(d, 3H, C2-OH, C3-OH, & C4-OH), 4.660-4.687(t, H,C6-OH),6.89-7.59(m, 4H, Ar-OH), 8.34(S, H, CH=N), 13.257(S, H, Ar-H)ppm. FABMS: m/z 180 ([M+H] ⁺, 90%), 179 ([M⁺], 30%). Anal. calcd. for [C₁₃H₁₇O₆N.H₂O]: C, 55.14; H, 6.00; N, 4.95 found C, 55.08; H, 6.12; N, 5.10.

N-(o-hydroxynaphthalen-1-yl)-β-D- galactopyranosylamine(L₃)- To a suspension of β-D- galactopyranosyl-C1-deoxy-C1-amine (galactosyl-C1-NH₂, 3.86 g, 20 mmol) in 45 ml ethanol, β-hydroxy napthaldehyde (R-CHO; 2.2 g, 20.96 mmol) was added and then the reaction mixture was allowed to reflux for 6 h. During the course of reflux, yellow solid was formed. The reaction mixture was allowed to cool at room temperature and was left as such overnight. Some more solid was formed which was then separated by filtration and washed with a small portion of methanol and then with petroleum ether. Yield, (4.01g, 70%); IR (KBr): 3320(b) $v_{(O-H)}$ and $v_{(N-H)}$, 2940(S), 2975(S) and 2910(S) $v_{(C-H)}$, 1660(S) $\delta_{(CH=N)}$.cm⁻¹; ¹H NMR(DMSO-d₆):3.12-3.57(m. 6H, C2-H, C3-H, C-4H, , C6-H), 3.72-3.75(m, H, C5-H), 4.36-5.38(m,4H, C2-OH, C3-OH, C-4OH, C6-OH), 4.62(d, H, ³J_{C1-H-C2-H} 11.02 Hz, C1-H), 6.77-7.81(m, 6H, Ar-H), 8.11(S, H, CH=N), 14.21(S, H, Phenol-OH) ppm; ¹³C NMR(DMSO-d₆): δ 91.10(C1), 60.68-77.76(C2-C6), 106.20-137.52(Ar-10C), 158.10(CH=N) ppm; FABMS: m/z 334 ([M+H]⁺, 70%), 333 ([M⁺], 40%) Anal. calcd. for C₁₇H₂₁O₆N: C, 61.24; H, 5.75; N, 4.20 found C, 61.22; H, 6.00; N, 3.94.

¹H NMR, FT IR and mass spectra are given in figures F 01a, F 01b and F 01c respectively for L_1 , L_2 and L_3 .

Figure F 01a. (a) ${}^{1}H$ NMR L₁, (b) L₂ and (c) L₃ in DMSO-d₆.

Figure F 01b. FR-IR spectra for: L_1 (top); L_2 (middle); L_3 (bottom) in KBr matrix.

Figure F 01c. FAB mass spectra: (a) L_1 , (b) L_2 and (c) L_3 .

SI 02a: Absorption titration of L₁ against M²⁺ in CH₃OH

Figure F 02a. UV-Vis absorption spectra of M^{2+} titration with L₁ in MeOH.

SI 03a: Fluorescence titration for L_2 against Cu^{2+} and Zn^{2+} in CH_3OH

SI 03a: Fluorescence titration for L_2 against (a) & (b) vs. Cu^{2+} and (c) & (d) vs. Zn^{2+} in CH_3OH

SI 03b: Absorption titration for L₂ against M^{2+} in CH₃OH (M=Mn²⁺, Fe²⁺, Co²⁺, Ni²⁺)

Figure F 03b. UV-Vis absorption spectra of M^{2+} titration with L₂ in MeOH.

SI 04: Absorption titration of L_3 against M^{2+} in methanol

Figure F 04a. UV-Vis absorption spectra of M^{2+} titration with L₃ in MeOH.

SI 05: Competitive metal ion titration for L₁ in methanol.

Figure F 05a. Competitive titration in methanol using L_1 . (a) (RNI + 1.0 eq Zn²⁺) vs. M^{2+} and (b) (RNI + 0.5 eq Cu²⁺) vs. M^{2+} .

SI 06: Fluorescence spectral traces for L_3 in methanol and HEPES buffer

Figure F 06a. Fluorescence intensity vs. wavelength plot for L_3 in methanol and HEPES buffer (pH = 7.2) showing the decrease in intensity upon changing the solvent.

SI 07: Fluorescence titration in HEPES buffer for L₃ against M²⁺

Figure F 07a. Fluorescence titration of GSI against Cu^{2+} and Zn^{2+} in HEPES buffer (pH = 7.0) showing no response at all to those two metal ions; (a) Intensity vs. Wavelength trace for GSI vs. Cu^{2+} ; (b) Relative fluorescence intensity (I/I0) vs. Mole Ratio plot for GSI vs. Cu^{2+} ; (c) Intensity vs. Wavelength trace for GSI vs. Zn^{2+} ; (d) Relative fluorescence intensity (I/I0) vs. Mole Ratio plot for GSI vs. Zn^{2+} ; (d) Relative fluorescence intensity (I/I0) vs. Zn^{2+}; (d) Relative fluorescence intensity (I/I0) vs. Mole Ratio plot for GSI vs. Zn^{2+} ; (d) Relative fluorescence intensity (I/I0) vs. Mole Ratio plot for GSI vs. Zn^{2+}; (d) Relative fluorescence intensity (I/I0) vs. Mole Ratio plot for GSI vs. Zn^{2+}.

SI 08: Absorption titration for L_2 against Cu^{2+} and Zn^{2+} in HEPES buffer

Figure F 08a. UV-Vis absorption spectra measured in the titration of M^{2+} with L_2 in HEPES buffer at different $[M^{2+}]/[L_2]$ mole ratios ranging from 0.0 to 2.0: (a) Cu²⁺; and (b) Zn²⁺.

Figure F 08b. UV-Vis absorption spectra of M^{2+} titration with L₁ in HEPES buffer for (a) Cu^{2+} ; (b) Zn^{2+}

SI 09: ¹H-NMR and mass spectral traces for the Cu(II) complexes, viz., 1, 2 and 3.

Figure F 09a. ¹H NMR of (a) **1**, (b) **2**, and (c) **3**. All are recorded in DMSO-d₆.

Figure F 09b. Mass spectra: (a) 1, (b) 2 and (c) 3.

SI 10: EPR spectral studies

Figure F 10a. EPR spectral traces of **1** under different conditions mentioned on the spectrum. Py = pyridine; LNT = Liquid nitrogen temperature.

Figure F 10b. EPR spectral traces of **2** under different conditions mentioned on the spectrum. Py = pyridine; LNT = Liquid nitrogen temperature.

Figure F 10c. EPR spectral traces of **3** under different conditions mentioned on the spectrum. Py = pyridine; LNT = Liquid nitrogen temperature.

Figure F 11: ORTEP view of the three dinuclear complexes 1a-(i), 1a-(ii) and 1a-(iii) in the asymmetric unit in **1a** at 150 K with thermal ellipsoids cut at the 50% probability level for non-H atoms. The dimer 1a-(i) is bounded to solvent while two others are not.

D-H—[Å]	d_{HA} (Å)	d_{DA} (Å)	<dha(°)< th=""><th>Symmetry</th></dha(°)<>	Symmetry
1 a				
O31—H31O O34	2.013	2.840	168.0	-x+2,y+1/2,-z+1
O34—H34 O41	1.900	2.654	148.0	x,y,z
O40—H40 O30	2.150	2.835	139.0	x,y,z
O41—H41 O30	2.496	3.269	154.0	x,y,z
O32—H32 O6	1.941	2.762	166.0	x,y,z
O16H16O O27	1.910	2.719	161.0	x,y,z
O20H20O O16	2.010	2.816	162.0	-x+1,y-1/2,-z
O22 H22O O9	1.810	2.641	173.0	x,y,z
O26H26O O33	2.040	2.858	164.0	-x+1,y-1/2,-z
O27H27O O12	1.860	2.671	163.0	x,y,z
O33—H33O O22	1.900	2.721	165.0	x,y+1,z
1 b				
O2 H2O O6	1.960	2.791	171.0	x,y,z
O2 H2O O7	2.030	2.757	144.0	x,y,z
O3 H3O O4	1.860	2.698	172.0	-x+2,+y,-z+1
O7 H6 O5	2.700	3.438	142.7	-x+2,+y,-z+1
O6 H6 O6	2.664	3.366	142.0	-x+2,+y,-z+1
O6 H6 O7	1.986	2.710	144.0	-x+2,+y,-z+1
3				
О9—Н9О1	1.852	2.668	173.3	x,y,z
O3—H3O7	1.911	2.692	158.8	x,y,z
O4—H4O111	2.144	2.860	145.9	x,y,z
С18—Н18О111	2.676	3.601	173.2	-
				x+1,+y+1/2,z+1
011—H1104	1.925	2.733	167.3	-x+1,y+1/2,-z+1
С7—Н7О111	2.638	3.548	165.5	-x+1,y+1/2,-z+2
O5—H5O111	2.213	2.970	152.1	-x+1,y+1/2,-z+2

SI 12. H-bond data for the structures 1a, 1b and 3