CYCLOMETALLATION OF AMINO-IMINES ON PALLADIUM COMPLEXES. THE EFFECT OF THE SOLVENT ON THE EXPERIMENTAL AND CALCULATED MECHANISM.

Gabriel Aullón,^a Romain Chat,^a Isabelle Favier,^a Mercè Font-Bardia,^b Montserrat Gómez,^a Jaume Granell,^a Manuel Martínez^a and Xavier Solans.^b

^a Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1–11, E–08028 Barcelona, SPAIN.

^b Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n, E-08028 Barcelona, SPAIN

Supplementary material

Figure S1.- UV-Vis spectral changes of the $Z \neq E$ isomerization reaction of complex Z-2AcO, in methanol solution at 25 °C and [Pd] $\approx 5 \times 10^{-5}$ M.

Figure S2.- Energy profile (data from Table 2) for the proposed mechanism from $[Pd(\eta^2 - AcO)(HAcO)(\kappa^1 - N_{imino})]^+$ (**B1**) having an external acetic molecule assisting the transition state in methanol.

The individual values of the relative energies for this assisted mechanism have been estimated by comparison with those having an acetic acid molecule obtained from a half dimer, $H_2(AcO)_2$, and are probably overstabilized by two intermolecular hydrogen bonds.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Table S1.– Numbering scheme and ¹H NMR (CD₃OD solution, 400 MHz, 298 K) data (δ (*J*)/ppm(Hz), reference TMS) for all the complexes studied; n.e. stands for non–existent nucleus in the compound.

Compound	a; a'	b; b'	c; c'	d; d'	e	f; f'	g; g'
<i>E</i> - 1AcO	2.64	2.52 (m)	n.e.	4.04 (m)	8.22 (b)	8.21 (d, 8.4)	7.42 (d,8.4)
Z-1AcO	2.59	2.61 (m)	n.e.	3.89 (td, 6.0, 2.0)	7.81 (b)	7.54 (d, 8.8)	7.49 (d, 8.8)
<i>E</i> - 1Cl	2.61; 2.49	1.94 (m); 2.38 (m)	n.e.	3.3 (m); 4.55 (m)	8.22 (b)	9.15 (d, 8.4)	7.58 (d, 8.4)
E-2AcO	2.22; 2.41	3.50	0-3.56-4.70 (m)		8.07 (b)	9.42 (d, 8.4)	7.62 (d, 8.4)
<i>E</i> - 2Cl	2.53; 2.71	3.82 (m)	2.05 (m)	4.65 (m)	8.32	9.21 (d, 8.8)	7.67 (d, 8.8)
CM-1AcO	2.54	2.85 (t, 6.1)	n.e.	3.82 (td, 6.1, 2.6)	8.00 (t, 8.0)	7.15 (d, 8.2); n.e.	6.94 (dd, 8.2, 2.2); 6.75 (d, 2.2)
<i>CM</i> - 1Cl	2.52	2.55 (t, 5.2)	n.e.	3.62 (td, 5.4, 1.6)	8.13 (b)	7.15 (d 8.0);n.e.	6.93(dd, 8.0, 2.0); 7.64 (d, 2.0)
CM-2AcO	2.4	2.55 (m)	2.03 (b)	3.55 (m)	8.05	7.17 (d, 8.0); n.e.	6.94 (dd, 8.0, 2.0); 6.74 (d, 2.0)
<i>CM</i> - 2Cl	2.62	2.64 (m)	1.94 (m)	3.71 (m)	8.22 (t, 1.8)	7.25 (d, 8.0); n.e.	7.02 (dd, 8.0, 2.0); 7.74 (d, 2.0)

m = multiplet; d = doublet; t = triplet; dd = doublet of doublets; b = broad

Table S2 Calculated relative energies (in kJ/mol) for the stationary points in the cyclo	palladation
process in gas phase, toluene, methanol and water solutions $(A1 = B1 \text{ and } A3 = B4)$.	

	Gas phase	Toluene	Methanol	Water
6-membered transition state mechanism				
A1	0.0	0.0	0.0	0.0
TS_{A1-2}	45.0	43.1	40.1	38.6
A2	31.2	20.5	8.6	6.7
TS _{A2-3}	57.4	50.4	46.2	46.6
A3	-31.9	-36.9	-39.2	-39.1
4-membered transition state mechanism				
B1 = A1	0.0	0.0	0.0	0.0
TS_{B1-2}	67.8	58.1	72.3	72.0
B2	32.2	20.2	9.7	8.3
B2*	43.4	39.3	35.1	8.3
TS_{B2-3}	160.2	154.3	146.2	145.7
TS _{B2-3} *	49.0	47.6	49.5	50.6
B3	14.4	4.3	-4.2	-5.8
B3*	-44.8	40.2	-31.7	-15.2
$\mathbf{B4}=\mathbf{A3}$	-31.9	-36.9	-39.2	-39.1
Acid-assisted mechanism				
C1	0.0	0.0	0.0	0.0
TS _{C1-2}	38.1	38.0	31.0	26.7
C2	20.4	19.0	14.0	15.0
TS _{C2-3}	41.2	41.2	40.7	43.5
C3	-155.4	-74.5	-18.9	-6.7

	EELECTRONIC	ΔG^{o}
6-membered cycle		
A1	-949.7575134	-949.544722
TS _{A12}	-949.7403813	-949.522199
A2	-949.7456401	-949.530644
TS _{A23}	-949.7356411	-949.522476
A3	-949.7696494	-949.553018
4-membered cycle (inc	ludung assisted pathwo	ay)
B1	-949.7575134	-949.516309
TS _{B12}	-949.7316896	-949.532067
B2	-949.7452629	-949.485946
TS _{B23}	-949.6964862	-949.536522
B3	-949.7520097	-949.529584
B4	-949.7696494	-949.553018
B1+HAcO	-1178.6920952	-1178.434926
B2*	-1178.6755488	-1178.408799
TS _{B23} *	-1178.6734296	-1178.405647
B3*	-1178.7091604	-1178.440987
Acid-catalyzed mechan	vism	
C1	-1178.9442668	-1178.663295
TS _{C12}	-1178.9297607	-1178.654821
C2	-1178.9364890	-1178.661302
TS _{C23}	-1178.9285663	-1178.653466
C3	-1179.0034479	-1178.736704
Only Complex	-949.7695653	-949.551170
Acetic derivatives		
H ₂ (AcO) ₂	-457.8691636	-457.780408
AcO	-228.3323232	-228.310590
H ₂ AcO ⁺	-229.2338826	-229.185534

Table S3.- Absolute energies, and free energies for calculated stationary points. Data are in atomic units (Hartrees) (A1 = B1 and A3 = B4).

Table S4.– Values of k_{obs} for the systems studied in methanol solution, as a function of the starting coordination compound, temperature and pressure; $[Pd] = (5-10) \times 10^{-4}$ M. All the values are the average of 2 to 4 runs.

Palladium complex	Т /ºС	P /atm	$10^4 \times k_{\rm obs} / {\rm s}^{-1}$
E-1AcO fast step	20	1	2
	25	1	3.8
	31.7	1	8
	35	1	13
	40.7	1	24
	45	1	35
	48.6	1	48
<i>E</i> -1AcO ^{slow step}	20	1	0.08
	25	1	0.017
	31.7	1	0.5
	35	1	0.9
	40.7	1	1.8
	45	1	4.1
	46.5	300	5.2
		600	5.5
		900	6.5
		1200	6.8
		1500	7.3
	48.6	1	7.8
	54.4	1	16
Z-1AcO fast step	23	300	3.5
		600	5
		900	4.5
		1200	4
		1500	3.3
	25	1	1.6
	26.9	1	2
	39.4	1	8
	48	1	16
	54	1	38
Z-1AcO slow step	25	1	0.19
	26.9	1	0.26

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\textcircled{O}}$ The Royal Society of Chemistry 2009

	39.4	1	1.8
	43	300	3.2
	43	600	3.4
	43	900	3.6
	43	1500	4.3
	48	1	6.9
	54	1	13
<i>E</i> -1Cl	13	600	2.4
		900	2.9
		1200	3
		1500	3.8
	13.1	1	2.1
	19	300	5.2
		600	5.3
		900	7
		1200	7
		1500	8
	21.5	1	6.8
	25	1	13
	29.6	1	19
	40	1	48
	44.6	1	61
E -2AcO	14.4	1	0.39
	22.2	1	1.3
	29.3	1	3.6
	30	300	4.1
		600	4.4
		900	5.2
		1200	5.3
		1500	6.1
	34.5	1	11
	39.4	1	29
	45	1	62
<i>E</i> -2Cl	17	300	5.1
		600	5.6
		900	6.5
		1200	7.4

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

	1500	7.6
18.1	1	4.6
25	1	11
31.8	1	18
37.4	1	37
44.9	1	60

fast step Corresponds to the establishment of the $Z \neq E$ equilibrium slow step Correspond to formation of the **1AcO**-*CM*