
Supplementary Information Figure Caption

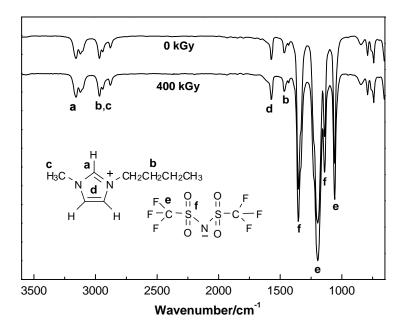

- **Fig. S1** SEM and energy dispersive X-ray spectroscopy (EDS) spectra of the precipitate separated from the interface of irradiated $[C_4mim][NTf_2]$ and aqueous solution of Sr^{2+} . The contacting time of the two phases is less than 2 weeks (left) and more than 2 months (right), respectively.
- **Fig. S2** ¹H NMR spectra of unirradiated [C₄mim][NTf₂] and irradiated [C₄mim][NTf₂] at 400 kGy after contacting with aqueous solution of Sr²⁺ for 1 month. Deuterated DMSO was used as solvent in the measurements.
- **Fig. S3** FTIR spectra of unirradiated $[C_4mim][NTf_2]$ and irradiated $[C_4mim][NTf_2]$ at 400 kGy after contacting with aqueous solution of Sr^{2+} for 1 month. The spectra were recorded as liquid films between KBr plates.

Fig. S1 SEM and energy dispersive X-ray spectroscopy (EDS) spectra of the precipitate separated from the interface of irradiated $[C_4 mim][NTf_2]$ and aqueous solution of Sr^{2+} . The contact time of the two phases is less than 2 weeks (left) and more than 2 months (right), respectively. C element in EDS is attributed to adventitious hydrocarbons due to exposure to air.

Fig. S2 1 H NMR spectra of unirradiated [C₄mim][NTf₂] and irradiated [C₄mim][NTf₂] at 400 kGy after contacting with aqueous solution of Sr²⁺ for 1 month. Deuterated DMSO was used as solvent in the measurements. The comparison shows no discernible differences in the two spectra.

Fig. S3 FTIR spectra of unirradiated $[C_4mim][NTf_2]$ and irradiated $[C_4mim][NTf_2]$ at 400 kGy after contacting with aqueous solution of Sr^{2+} for 1 month. The spectra were recorded as liquid films between KBr plates. The comparison shows no discernible differences in the two spectra.