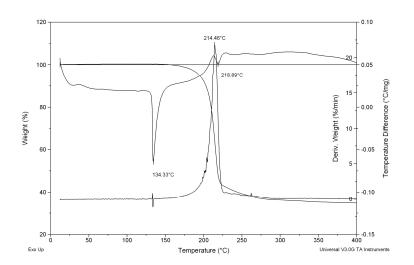
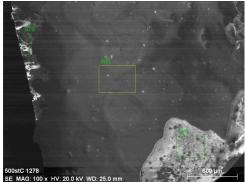
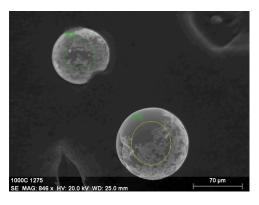
X-RAY STRUCTURAL AND GAS PHASE STUDIES OF SILVER(I) PERFLUORINATED CARBOXYLATES COMPLEXES WITH 2,2'- BIPYRIDYL AS POTENTIAL PRECURSORS FOR CHEMICAL VAPOR DEPOSITION (CVD)

Edward Szłyk, Robert Szczęsny, Andrzej Wojtczak

Nicolaus Copernicus University, Faculty of Chemistry, 87 100 Toruń, Poland

SUPLEMENTARTARY INFORMATION


Fig. 1. TG, DTG and DTA plots for $[Ag(CF_3COO)(bpy)]$ (1) $(5^{\circ}/min., N_2)$.

Mass percent (%)

Spectrum	С	0	F	Al	Ag
978 979 980	2.61	52.86 50.51 6.05	-	38.62 37.30 1.03	7.44
Mean value: Sigma: Sigma mean:	0.53	26.38	7.62	25.65 2 1 .33 12.32	44.97

Mass percent (%)

Spectrum	С	0	Mg	Al	Ag
975 976		14.87 15.53			
Mean value: Sigma: Sigma mean:	0.03	0.47	0.36	0.35	0.55

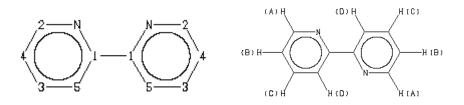

b)

Fig. 2. SEM micrographs and EDX spectra of the decomposition product of [Ag(CF₃COO)(bpy)] (1) on crucible surfaces. (5°/min., N_2): a) under heating to 500°C, b) under heating to 1000°C.

Tab. 1. ¹³C, ¹H NMR spectra analysis for **(1)**, **(2)** and **(3)** [ppm] (CD₃Cl₃).

	(1)	(2)	(3)
¹ H	8.77 (A)	8.76 (A)	8.71 (A)
	7.51 (B)	7.49 (B)	7.46 (B)
	7.99 (C)	7.97 (C)	7.98 (C)
	8.18 (D)	8.11 (D)	8.14 (D)
¹³ C	122.0 (5)	121.9 (5)	122.1 (5)
	125.5 (4)	125.7 (4)	125.6 (4)
	138.9 (3)	138.9 (3)	138.9 (3)
	151.2 (2)	151.3 (2)	151.5 (2)
	151.6 (1)	151.5 (1)	- (1)
	162.6 (δ COO,q)	162.6 (δ COO,t)	163.0 (δ COO,t)
	Δ _{COO} = 0.5	Δ _{COO} = 3.4	Δ _{COO} = 3.9

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

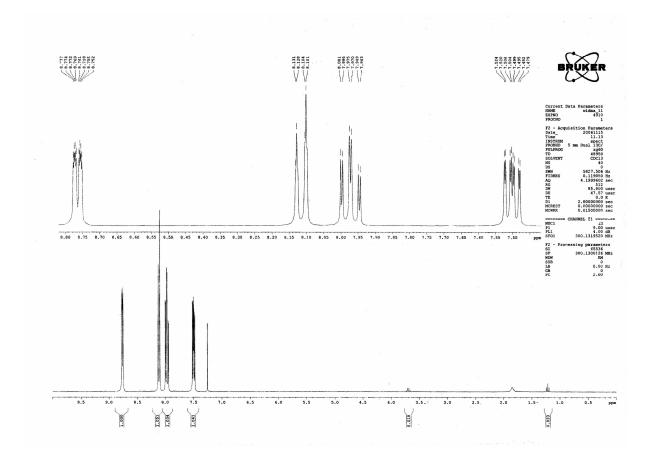


Fig. 3. 1 H NMR spectra of [Ag₂(C₂F₅COO)₂(bpy)] **(2)**.

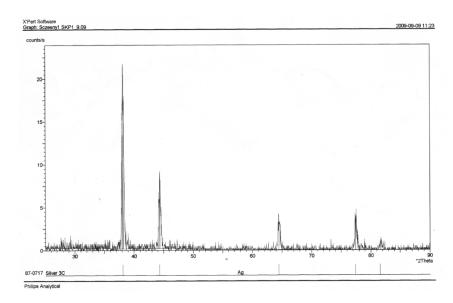


Fig. 4. XRD pattern of film obtained from [Ag₂(C_2F_5COO)₂(bpy)] (2) (thinner film).

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

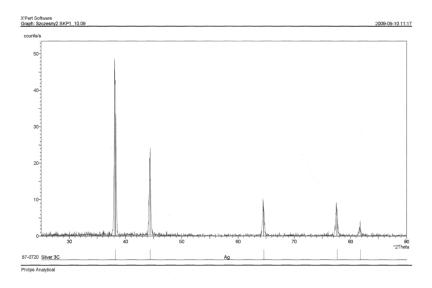


Fig. 5. XRD pattern of film obtained from $[Ag_2(C_2F_5COO)_2(bpy)]$ (argest thickness).