Alternating Ethylene-Norbornene Co-polymerization Catalyzed by Cationic Organopalladium Complexes Bearing Hemi-labile Bidentate Ligands of *α*-Amino-Pyridines

Ya-Chi Lin, Kuo-Hsuan Yu, Shou-Ling Huang, Yi-Hung Liu, Yu Wang, Shiuh-Tzung Liu and Jwu-Ting

Chen*

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

Supplementary

Experimental section	1
Determination of norbornene content and alternating percentage for copolymers	22
Determination of ethylene concentration	22
Fineman-Ross plot	23
Correlation of T _g and norbornene content determined from ¹³ C NMR data	24
¹³ C NMR spectra of ethylene and norbornene copolymer catalyzed by 3b '	27
Kinetic data and spectra of varible temperature NMR	26
X-ray crystal data and ORTEP drawings	32
2D-NOSEY spectrum for 3b in CDCl ₃	39
Comparative ¹ H NMR spectrum of norbornene insertion into 3b '	40
References	41

Experimental Section

Synthesis and Characterization.

N-(**pyridin-2-ylmethylene**)-**propan-2-amine** A 30 mL solution of dichloromethane that contained 2-pyridinecarboxaldehyde (2.40 mL, 25 mmol) and isopropylamine (2.20 mL, 25 mmol) was refluxed with the presence of catalytic amounts of sulfuric acid and 4Å activated molecular sieves for 24 h. The reaction mixture was first filtrated, and the solvent was removed in *vacuo*. The product was collected as a yellow liquid by distillation. (2.58 g, 70%). ¹H NMR (300 MHz, CDCl₃): δ 8.56 (d, *J*_{HH} = 5.0 Hz, 1H, Py H-6), 8.32 (s, 1H, *CH*=N), 7.91 (d, *J*_{HH} = 8.3 Hz, 1H, Py H-3), 7.64 (t, *J*_{HH} = 7.6 Hz, 1H, Py H-4) 7.22 (t, *J*_{HH} = 6.8 Hz, 1H, Py H-5), 3.56 (sept, *J*_{HH} = 6.1 Hz, 1H, NC*H*(CH₃)₂), 1.21 (d, *J*_{HH} = 5.9 Hz, 6H, NCH(CH₃)₂).

¹**PrHNCH**₂(*o*-C₆H₅N) (L3a) To a solution of (pyridin-2-ylmethylene)-propan-2-amine (2.58 g, 17 mmol) in methanol (50 mL) was added excess NaBH₄ (1.00 g, 26 mmol). The reaction was stirred overnight at 25 °C, then quenched by water and extracted into dichloromethane. After solvent was removed under reduced pressure, the residue was distilled to give a yellow liquid product L3a in 74% yield (1.92 g). ¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, J_{H-H} = 4.0 Hz, 1H, Py H-2), 7.55 (dt, J_{H-H} = 2.0, 7.5 Hz, 1H, Py H-4), 7.20 (d, J_{H-H} = 7.9 Hz, 1H, Py H-5), 7.07 (t, J_{H-H} = 5.9 Hz, 1H, Py H-3), 3.82 (s, 2H, Py-CH₂N), 2.79 (sept, J_{H-H} = 6.1 Hz, 1H, NHC*H*(CH₃)₂), 1.04 (d, J_{H-H} = 6.5 Hz, 6H, NCH(CH₃)₂). ¹³C NMR (100.625 MHz, CDCl₃): δ 159.98 (Py C-2), 149.28 (Py C-6), 136.42 (Py C-4), 122.40 (Py C-5), 121.87 (Py C-3), 52.96 (Py-CH₂N), 48.46 (NCH(CH₃)₂), 22.94 (NCH(CH₃)₂).

^tBuHNCH₂(*o*-C₆H₅N) (L4a) The synthesis was carried out according to the same procedure as for L3a, using 2-pyridinecarboxaldehyde (2.40 mL, 25 mmol) and *tert*-butylamine (2.65 mL, 25 mmol) to give the product of condensation, 2-methyl-*N*-(pyridin-2-ylmethylene)propan-2-amine (2.87 g, 71%). ¹H NMR (300 MHz, CDCl₃): δ 8.54 (d, J_{H-H} = 3.7 Hz, 1H, Py H-6), 8.28 (s, 1H, C*H*=N), 7.94 (d, J_{H-H} = 8.1 Hz, 1H, Py H-3), 7.63 (dt, J_{H-H} = 1.4, 7.7 Hz, 1H, Py H-4), 7.20 (ddd, J_{H-H} = 1.4, 5.3, 6.9 Hz, 1H, Py

H-5), 1.23 (s, 9H, NC(CH₃)₃).

The reductive reaction of 2-methyl-*N*-(pyridin-2-ylmethylene)propan-2-amine (2.87 g, 18 mmol) gave the product **L4a** in 75% yield (2.19 g). ¹**H NMR** (400 MHz, CDCl₃): δ 8.53 (d, *J*_{H-H} = 4.7 Hz, 1H, Py H-6), 7.62 (dt, *J*_{H-H} = 1.8, 7.6 Hz, 1H, Py H-4), 7.32 (d, *J*_{H-H} = 7.8 Hz, 1H, Py H-3), 7.13 (ddd, *J*_{H-H} = 1.0, 4.9, 7.4 Hz, 1H, Py H-5), 3.88 (s, 2H, Py-CH₂N), 1.20 (s, 9H, NC(CH₃)₃). ¹³**C NMR** (100.625 MHz, CDCl₃): δ 160.30 (Py C-2), 149.10 (Py C-6), 136.50 (Py C-4), 122.52 (Py C-5), 121.80 (Py C-3), 50.66 (NC(CH₃)₃), 48.47 (Py-CH₂N), 29.02 (NC(CH₃)₃).

PhHNCH₂(*o*-C₆H₅N) (L5a) A solution of 2-pyridinecarboxaldehyde (4.80 mL, 50 mmol), aniline (4.60 mL, 50 mmol), catalytic amount of sulfuric acid and activated molecular sieves 4Å in toluene (30 mL) were combined in round-bottom flask. A condensation reaction was carry out by azeotropic removal of water using Dean-Stark apparatus for 24 hr. Then the reaction mixture was filtrated, and the solvent was removed in *vacuo*. The crude product was distilled to give a yellow liquid as the product of condensation, *N*-(pyridin-2-ylmethylene)aniline (6.37 g, 70%). ¹H NMR (300 MHz,CDCl₃): δ 8.70 (d, $J_{H-H} = 4.2$ Hz, 1H, Py H-6), 8.59 (s, 1H, CH=N), 8.19 (d, $J_{H-H} = 7.8$ Hz, 1H, Py H-3), 7.77 (dt, $J_{H-H} = 1.6$, 7.8 Hz, 1H, Py H-4), 7.23~7.42 (m, 1H, Py H-5; m, 5H, Ar).

The successive reduction of *N*-(pyridin-2-ylmethylene)aniline (6.37 g, 35 mmol) gave a yellow liquid product **L5a** in 63% yield (5.76 g). ¹**H NMR** (400 MHz, CDCl₃): δ 8.60 (dd, *J*_{H-H} = 0.8, 4.9 Hz, 1H, Py H-6), 7.64 (dt, *J*_{H-H} = 1.7, 7.7 Hz, 1H, Py H-4), 7.35 (d, *J*_{H-H} = 7.8 Hz, 1H, Py H-3), 7.17~7.22 (m, 1H, Py H-5; 2H, m-Ar), 6.75 (dt, *J*_{H-H} = 0.5, 7.4 Hz, 1H, p-Ar), 6.69 (d, *J*_{H-H} = 8.3 Hz, 2H, o-Ar), 4.48 (s, 2H, Py-CH₂N). ¹³**C NMR** (100.625 MHz, CDCl₃): δ 158.57 (Py C-2), 149.20 (Py C-6), 147.93 (ipso-Ar), 136.69 (Py C-4), 129.28 (o-Ar), 122.13 (Py C-5), 121.62 (Py C-3), 117.61 (p-Ar), 113.08 (m-Ar), 49.30 (Py-CH₂N).

(2,6-Me₂C₆H₃)HNCH₂(o-C₆H₅N) (L6a) The synthesis was carried out according to the same

procedure as for **L5a**, using 2-pyridinecarboxaldehyde (2.40 mL, 25 mmol) and 2,6-dimethyllaniline (3.10 mL, 25 mmol) to give the product of condensation, 2,6-dimethyl-*N*-(pyridin-2-ylmethylene)aniline (3.58 g, 68%). ¹H NMR (200 MHz, CDCl₃): δ 8.70 (d, *J*_{H-H} = 5.0 Hz, 1H, Py H-6), 8.33 (s, 1H, *CH*=N), 8.23 (d, *J*_{H-H} = 7.6 Hz, 1H, Py H-3), 7.83 (dt, *J*_{H-H} = 1.5, 7.7 Hz, 1H, Py H-4), 7.38 (ddd, *J*_{H-H} = 1.2, 4.9, 8.0 Hz, 1H, Py H-5), 6.90~7.15 (m, 5H, Ar), 2.17 (s, 6H, Ar-CH₃).

The reductive reaction of 2,6-dimethyl-*N*-(pyridin-2-ylmethylene)aniline (3.58 g, 17 mmol) gave the product **L6a** in 81% yield (4.24 g). ¹H NMR (400 MHz, CDCl₃): δ 8.63 (ddd, $J_{\text{H-H}}$ = 0.9, 1.6, 4.8 Hz, 1H, Py H-6), 7.65 (dt, $J_{\text{H-H}}$ = 1.8, 7.6 Hz, 1H, Py H-4), 7.27 (d, $J_{\text{H-H}}$ = 7.7 Hz, 1H, Py H-3), 7.20 (ddd, $J_{\text{H-H}}$ = 0.5, 5.0, 7.4 Hz, 1H, Py H-5), 7.02 (d, $J_{\text{H-H}}$ = 7.3 Hz, 2H, m-Ar), 6.85 (t, $J_{\text{H-H}}$ = 7.5 Hz, 1H, p-Ar), 4.31 (s, 2H, Py-CH₂N), 2.35 (s, 6H, Ar-CH₃). ¹³C NMR (100.625 MHz, CDCl₃): δ 159.12 (Py C-2), 149.24 (Py C-6), 146.12 (ipso-Ar), 136.50 (Py C-4), 129.53 (o-Ar), 128.83 (m-Ar), 122.14 (Py C-5), 122.03 (Py C-3), 121.91 (p-Ar), 53.66 (Py-CH₂N), 18.69 (Ar-CH₃).

(2,6-ⁱPr₂C₆H₃)HNCH₂(*o*-C₆H₅N) (L7a) The synthesis was carried out according to the same procedure as for L5a, using 2-pyridinecarboxaldehyde (2.40 mL, 25 mmol) and 2,6-diisopropylaniline (4.70 mL, 25 mmol) to give the product of condensation, 2,6-diisopropyl-N-(pyridin-2-ylmethylene)aniline (3.83 g, 58%). ¹H NMR (400 MHz, CDCl₃): δ 8.75 (d, *J*_{H-H}= 4.9 Hz, 1H, Py H-6), 8.35 (s, 1H, C*H*=N), 8.30 (d, *J*_{H-H}= 7.9 Hz, 1H, Py H-3), 7.86 (t, *J*_{H-H}= 7.7 Hz, 1H, Py H-4), 7.43 (dd, *J*_{H-H}= 4.9, 7.4Hz, 1H, Py H-5), 7.12~7.22 (m, 2H, m-Ar; 1H, p-Ar), 3.00 (sept, *J*_{H-H}= 6.8Hz, 2H, Ar-C*H*(CH₃)₂), 1.20 (d, *J*_{H-H}= 6.9 Hz, 12H, Ar-CH(C*H*₃)₂). ¹³C NMR (100.625 MHz, CDCl₃): δ 162.99 (*C*H=N), 154.36 (Py C-2), 149.71 (Py-C-6), 148.40 (o-Ar), 137.27 (ipso-Ar), 136.82 (Py C-4), 123.10 (m-Ar), 125.38, 124.52, 121.38 (p-Ar, Py C-5 and Py C-3), 27.98, 27.95 (Ar-CH(CH₃)₂), 23.49 (Ar-CH(CH₃)₂).

The reductive reaction of 2,6-diisopropyl-N-(pyridin-2-ylmethylene)aniline (3.83 g, 14 mmol) gave

the product **L7a** in 76% yield (2.95 g). ¹H NMR (400 MHz, CDCl₃): δ 8.64 (d, $J_{\text{H-H}}$ = 4.9 Hz, 1H, Py H-6), 7.67 (dt, $J_{\text{H-H}}$ = 1.7, 7.7 Hz, 1H, Py H-4), 7.33 (d, $J_{\text{H-H}}$ = 7.8 Hz, 1H, Py H-3), 7.21 (dd, $J_{\text{H-H}}$ = 5.2, 7.2 Hz, 1H, Py H-5), 7.05~7.17 (m, 2H, m-Ar; 1H, p-Ar), 4.21 (s, 2H, Py-CH₂N), 3.38 (sept, $J_{\text{H-H}}$ = 6.8 Hz, 2H, Ar-CH(CH₃)₂), 1.26 (d, $J_{\text{H-H}}$ = 6.7 Hz, 12H, Ar-CH(CH₃)₂). ¹³C NMR (100.625, CDCl₃): δ 159.03 (Py C-2), 149.34 (Py C-6), 143.07 (ipso-Ar), 142.72 (o-Ar), 136.50 (Py C-4), 123.91 (p-Ar), 123.59 (m-Ar), 122.16 (Py C-5), 122.04 (Py C-3), 56.81 (Py-CH₂N), 27.71 (Ar-CH(CH₃)₂), 24.28 (Ar-CH(CH₃)₂).

¹**PrHNCMeH**(*o*-C₆H₅N) (L3b) The synthesis was carried out according to the same procedure as for L3a, using 2-acetylpyridine (2.80 mL, 25 mmol) and isopropylamine (2.14 mL, 25 mmol) to give the product of condensation, *N*-(1-(pyridin-2-yl)ethylidene)propan-2-amine (3.56 g, 90%). ¹H NMR (400 MHz, CDCl₃): δ 8.58 (ddd, J_{H-H} = 1.0, 1.8, 4.8 Hz, 1H, Py H-6), 8.06 (dt, J_{H-H} = 1.1, 8.0 Hz, 1H, Py H-3), 7.68 (dt, J_{H-H} = 1.8, 7.7 Hz, 1H, Py H-4), 7.25 (ddd, J_{H-H} = 1.3, 4.9, 7.4 Hz, 1H, Py H-5), 3.91 (sept, J_{H-H} = 6.3 Hz, 1H, NC*H*(CH₃)₂), 2.36 (s, 3H, Py-C(CH₃)N), 1.23 (d, J_{H-H} = 6.2 Hz, 6H, NCH(CH₃)₂). ¹³C NMR (100.625 MHz, CDCl₃): δ 163.62 (Py-C(CH₃)N), 158.41 (Py C-2), 148.16 (Py C-6), 136.30 (Py C-4), 123.84 (Py C-5), 121.09 (Py C-3), 51.56 (NCH(CH₃)₂), 23.42 (NCH(CH₃)₂), 13.63 (Py-C(CH₃)N).

The reductive reaction of *N*-(1-(pyridin-2-yl)ethylidene)propan-2-amine (3.56 g, 22 mmol) gave the product **L3b** in 73% yield (2.62 g). ¹H NMR (400 MHz, CDCl₃): δ 8.54 (ddd, *J*_{H-H} = 0.9, 1.7, 4.8 Hz, 1H, Py H-6), 7.61 (dt, *J*_{H-H} = 1.8, 7.6 Hz, 1H, Py H-4), 7.26 (d, *J*_{H-H} = 8.0 Hz, 1H, Py H-3), 7.12 (ddd, *J*_{H-H} = 1.2, 4.8, 7.5 Hz, 1H, Py H-5), 3.96 (q, *J*_{H-H} = 6.7 Hz, 1H, Py-C*H*(CH₃)N), 2.59 (sept, *J*_{H-H} = 6.2 Hz, 1H, NC*H*(CH₃)₂), 1.35 (d, *J*_{H-H} = 4.7 Hz, 3H, Py-CH(CH₃)N), 1.04, 0.98 (d, *J*_{H-H} = 6.2, 6.3 Hz, 6H, NCH(CH₃)₂). ¹³C NMR (100.625 MHz, CDCl₃): δ 165.01 (Py C-2), 149.29 (Py C-6), 136.33 (Py C-4), 121.72 (Py C-5), 121.28 (Py C-3), 56.19 (Py-CH(CH₃)N), 45.70 (NCH(CH₃)₂), 23.24 (Py-CH(CH₃)N),

23.81, 22.25 (NCH(CH₃)₂).

^t**BuHNCMeH**(*o*-C₆H₅N) (L4b) The synthesis was carried out according to the same procedure as for L3a, using 2-acetylpyridine (5.60 mL, 50 mmol), *tert*-butylamine (5.30 mL, 50 mmol) to give the product L4b in 28% yield (2.5 g). ¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, J_{H-H} = 4.0 Hz, 1H, Py H-6), 7.60 (dt, J_{H-H} = 1.6, 7.5 Hz, 1H, Py H-4), 7.43 (d, J_{H-H} = 7.9 Hz, 1H, Py H-3), 7.08 (dd, J_{H-H} = 5.0, 7.2 Hz, 1H, Py H-5), 4.04 (q, J_{H-H} = 6.8 Hz, 1H, Py-C*H*(CH₃)N), 1.33 (d, J_{H-H} = 6.8 Hz, 3H, Py-CH(C*H*₃)N), 1.00 (s, 9H, NC(C*H*₃)₃). ¹³C NMR (100.625 MHz, CDCl₃): δ 167.69 (Py C-2), 148.67 (Py C-6), 136.30 (Py C-4), 121.36 (Py C-5), 121.03 (Py C-3), 53.75 (Py-CH(CH₃)N), 51.21 (NC(CH₃)₃), 29.92 (NC(CH₃)₃), 26.00 (Py-CH(CH₃)N).

PhHNCMeH(*o*-C₆H₅N) (L5b) The synthesis was carried out according to the same procedure as for L5a, using 2-acetylpyridine (11.00 mL, 98 mmol) and aniline (9.00 mL, 100 mmol) to give the product of condensation, *N*-(1-(pyridin-2-yl)ethylidene)aniline (11.65 g, 60%). ¹H NMR (300 MHz, CDCl₃): δ 8.66 (d, J_{H-H} = 5.0 Hz, 1H, Py H-6), 8.24 (d, J_{H-H} = 7.8 Hz, 1H, Py H-3), 7.77 (dt, J_{H-H} = 1.3, 8.0 Hz, 1H, Py H-4), 7.33 (m, 1H, Py H-5), 7.10 (m, 2H, m-Ar), 6.82 (d, J_{H-H} = 7.5 Hz, 2H, o-Ar), 6.66 (d, J_{H-H} = 7.5 Hz, 1H, p-Ar), 2.33 (s, 3H, C(CH₃)=N).

The reductive reaction of *N*-(1-(pyridin-2-yl)ethylidene)aniline (11.65 g, 59 mmol) gave the product **L5b** in 85% yield (9.92 g). ¹H NMR (400 MHz, CDCl₃): δ 8.60 (td, *J*_{H-H} = 0.8, 4.8 Hz, 1H, Py H-6), 7.61 (dt, *J*_{H-H} = 1.8, 7.7 Hz, 1H, Py H-4), 7.36 (d, *J*_{H-H} = 7.9 Hz, 1H, Py H-3), 7.00~7.20 (m, 1H, Py H-5; 2H, m-Ar), 6.68 (dt, *J*_{H-H} = 0.6, 7.3 Hz, 1H, p-Ar), 6.59 (dd, *J*_{H-H} = 0.6, 7.7 Hz, 1H, o-Ar), 4.65 (q, *J*_{H-H} = 6.7 Hz, 1H, Py-CH(CH₃)N), 4.49 (bs, 1H, NH-Ar), 1.57 (d, *J*_{H-H} = 6.8 Hz, 3H, Py-CH(CH₃)N). ¹³C NMR (100.625 MHz, CDCl₃): δ 163.92 (Py C-2), 149.31 (Py C-6), 147.14 (ipso-Ar), 136.83 (Py C-4), 129.18 (m-Ar), 121.98, 120.33, 117.41 (p-Ar, Py C-5 and Py C-3), 113.44 (o-Ar), 54.75 (Py-CH(CH₃)N), 23.21 (Py-CH(CH₃)N).

(2,6-Me₂C₆H₃)HNCMeH(o-C₆H₅N) (L6b) The synthesis was carried out according to the same procedure as for L5a, using 2-acetylpyridine (2.80 mL, 25 mmol) and 2,6-dimethylaniline (3.10 mL, 25 mmol) to give the product of condensation, 2,6-dimethyl-*N*-(1-(pyridin-2-yl)ethylidene)aniline (3.27 g, 58%). ¹H NMR (200 MHz, CDCl₃): δ 8.65 (d, *J*_{H-H} = 4.0 Hz, 1H, Py H-6), 8.35 (d, *J*_{H-H} = 8.0 Hz, 1H, Py H-3), 7.79 (dt, *J*_{H-H} = 1.9, 7.8 Hz, 1H, Py H-4), 7.36 (ddd, *J*_{H-H} = 1.2, 4.9, 7.2 Hz, 1H, Py H-5), 7.04 (d, *J*_{H-H} = 7.2 Hz, 2H, m-Ar), 6.92 (t, *J*_{H-H} = 6.4 Hz, 1H, p-Ar), 2.17 (s, 3H, C(CH₃)=N), 2.02 (s, 6H, Ar-CH₃).

The reductive reaction of 2,6-dimethyl-*N*-(1-(pyridin-2-yl)ethylidene)aniline (13.27 g, 15 mmol) gave the product **L6b** in 47% yield (1.59 g). ¹H NMR (400 MHz, CDCl₃): δ 8.62 (ddd, *J*_{H-H} = 0.9, 1.7, 4.8 Hz, 1H, Py H-6), 7.56 (dt, *J*_{H-H} = 1.8, 7.6 Hz, 1H, Py H-4), 7.16 (ddd, *J*_{H-H} = 1.2, 4.8, 7.5 Hz, 1H, Py H-5), 7.10 (dt, *J*_{H-H} = 1.0, 7.7 Hz, 1H, Py H-3), 6.95 (d, *J*_{H-H} = 7.4 Hz, 2H, m-Ar), 6.78 (t, *J*_{H-H} = 7.4 Hz, 1H, p-Ar), 4.43 (q, *J*_{H-H} = 6.7 Hz, 1H, Py-*CH*(CH₃)N), 2.25 (s, 6H, Ar-*CH*₃), 1.49 (d, *J*_{H-H} = 6.7 Hz, 3H, Py-*CH*(*CH*₃)N). ¹³C NMR (100.625 MHz, CDCl₃): δ 163.66 (Py C-2), 149.43 (Py C-6), 144.94 (ipso-Ar), 136.39 (Py C-4), 129.28 (o-Ar), 128.76 (m-Ar), 122.09, 121.46, 121.37 (p-Ar, Py C-5 and Py C-3), 57.92 (Py-*C*H(CH₃)N), 22.58 (Py-CH(*C*H₃)N), 18.97 (Ar-*C*H₃).

(2,6-ⁱPr₂C₆H₃)HNCMeH(*o*-C₆H₅N) (L7b) The synthesis was carried out according to the same procedure as for L5a, using 2-acetylpyridine (2.80 mL, 25 mmol) and 2,6-diisopropyllaniline (4.70 mL, 25 mmol) to give the product of condensation, 2,6-diisopropyl-N-(1-(pyridin-2-yl)ethylidene)aniline (1.05 g, 15%). ¹H NMR (400 MHz, CDCl₃): δ 8.70 (d, *J*_{H-H} = 7.9 Hz, 1H, Py H-6), 8.38 (d, *J*_{H-H} = 8.0 Hz, 1H, Py H-3), 7.83 (dt, *J*_{H-H} = 1.7, 7.6 Hz, 1H, Py H-4), 7.40 (ddd, *J*_{H-H} = 1.1, 4.9, 7.4 Hz, 1H, Py H-5), 7.00~7.20 (m, 2H, m-Ar; 1H, p-Ar), 2.76 (sept, *J*_{H-H} = 6.9 Hz, 2H, Ar-C*H*(CH₃)₂), 2.23 (s, 3H, Py-C(CH₃)N), 1.16 (d, 12H, *J*_{H-H} = 6.9 Hz, Ar-CH(CH₃)₂). ¹³C NMR (100.625 MHz, CDCl₃): δ 166.99 (Py-*C*(CH₃)N), 156.47 (Py C-2), 1498.59 (Py C-6), 146.40 (o-Ar), 136.51 (Py C-4), 135.81 (ipso-Ar), 123.00 (m-Ar), 124.81, 123.60, 121.34 (p-Ar, Py C-5 and Py C-3), 28.26 (Ar-CH(CH₃)₂), 22.91, 23.23

(Ar-CH(*C*H₃)₂), 17.34 (Py-C(*C*H₃)N).

The reductive reaction of 2,6-diisopropyl-N-(1-(pyridin-2-yl)ethylidene)aniline (1.05 g, 3.75 mmol) gave the product **L7b** in 29% yield (0.30 g). ¹H NMR (200 MHz, CDCl₃): δ 8.62 (d, $J_{\text{H-H}}$ = 4.9 Hz, 1H, Py H-6), 7.53 (dt, $J_{\text{H-H}}$ = 1.7, 7.5 Hz, 1H, Py H-4), 7.40 (ddd, $J_{\text{H-H}}$ = 1.1, 4.9, 7.4 Hz, 1H, Py H-5), 7.00~7.20 (m, 1H, Py H-3; 2H, m-Ar; 1H, p-Ar), 4.17 (q, 1H, $J_{\text{H-H}}$ = 6.7 Hz, Py-CH(CH₃)N), 3.21 (sept, $J_{\text{H-H}}$ = 6.9 Hz, 2H, Ar-CH(CH₃)₂), 1.50 (d, 3H, $J_{\text{H-H}}$ = 6.6 Hz, Py-CH(CH₃)N), 1.21, 1.04 (d, 12H, $J_{\text{H-H}}$ = 6.7, 6.8 Hz, Ar-CH(CH₃)₂). ¹³C NMR (100.625 MHz, CDCl₃): δ 163.24 (Py C-2), 149.56 (Py C-6), 142.13 (o-Ar), 141.62 (ipso-Ar), 136.25 (Py C-4), 123.42 (m-Ar), 123.13, 122.09, 121.84 (p-Ar, Py C-5 and Py C-3), 60.94 (Py-CH(CH₃)N), 27.60 (Ar-CH(CH₃)₂), 24.23, 24.17 (Ar-CH(CH₃)₂), 21.72 (Py-CH(CH₃)N).

[¹PrHNCH₂(*o*-C₆H₅N)]Pd(Me)Cl (3a) To a solution of (COD)PdMeCl (50 mg, 0.19 mmol) in Et₂O (15 mL) was added L3a (28 mg, 0.19 mmol) which was dissolved in Et₂O (5 mL). The mixture was stirred for 1h at room temperature. After filtration, the resulting precipitate was washed twice with Et₂O (2×5 mL) and dried in *vacuo*. The desired air-stable complex was obtained as pale yellow powder in 96% yield (59 mg). Single crystals suitable for X-ray diffraction were grown by slow diffusion of Et₂O into a saturated CH₂Cl₂ solution of 3a. ¹H NMR (400 MHz, CDCl₃) for *trans*-3a: δ 8.34 (d, *J*_{H-H} = 5.4 Hz, 1H, Py H-6), 7.82 (dt, *J*_{H-H} = 1.4, 7.7 Hz, 1H, Py H-4), 7.39 (d, *J*_{H-H} = 7.8 Hz, 1H, Py H-3), 7.25~7.35 (m, 1H, Py H-5), 4.49 (dd, *J*_{H-H} = 6.6, 16.2 Hz, 1H, Py-CH'HN), 3.93 (dd, *J*_{H-H} = 3.1, 16.1 Hz, 1H, Py-CH'HN), 3.24 (bs, 1H, NHCH(CH₃)₂), 3.18 (sept, *J*_{H-H} = 6.9 Hz, 1H, NHCH(CH₃)₂), 0.79 (s, 3H, Pd-CH₃); *cis*-3a: δ 8.72 (d, *J*_{H-H} = 4.7 Hz, 1H, Py H-6), 7.71 (dt, *J*_{H-H} = 1.6, 7.7 Hz, 1H, Py H-4), 7.25~7.35 (m, 1H, Py H-3), 7.20 (t, *J*_{H-H} = 6.5 Hz, 1H, Py H-5), 4.75 (dd, *J*_{H-H} = 6.5, 16.0 Hz, 1H, Py-CH'HN), 4.56 (bs, 1H, NHCH(CH₃)₂), 4.05 (dd, *J*_{H-H} = 3.1, 16.1 Hz, 1H, Py-CH'HN), 3.20 (sept, *J*_{H-H} = 6.3 Hz, 1H, NHCH(CH₃)₂), 0.54 (s, 3H, Pd-CH₃); 1.27, 1.21, 1.25 (d, d, m, *J*_{H-H} = 6.2, 6.4 Hz, 12H, NHCH(CH₃)₂). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-3a: δ 163.99 (Py C-2), 148.08 (Py C-6),

137.96 (Py C-4), 123.78 (Py C-5), 122.37 (Py C-3), 52.43 (Py- CH_2N), 51.34 (NH $CH(CH_3)_2$), 22.34, 21.47 (NH $CH(CH_3)_2$), -0.09 (Pd- CH_3); *cis*-**3a**: δ 159.12 (Py C-2), 148.13 (Py C-6), 138.12 (Py C-4), 123.27 (Py C-5), 120.61 (Py C-3), 54.49 (Py- CH_2N), 53.47 (NH $CH(CH_3)_2$), 22.00, 21.37 (NH $CH(CH_3)_2$), -8.87 (Pd- CH_3). MS (FAB, m/z): 255.0 (M⁺¹ - CH₃- Cl). Anal. Calcd for C₁₀H₁₇N₂PdCl: C, 39.10; H, 5.54; N, 9.12. Found: C, 38.52; H, 5.47; N, 9.29.

[^tBuHNCH₂(*o*-C₆H₅N)]Pd(Me)Cl (4a) The synthesis was carried out according to the same procedure as for 3a, using (COD)PdMeCl (265 mg, 1.00 mmol) and L4a (321 mg, 1.00 mmol) to give the pale white product 4a (278 mg, 85%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-4a: δ 8.37 (d, J_{H-H} = 5.5 Hz, 1H, Py H-6), 7.81 (t, J_{H-H} = 7.7 Hz, 1H, Py H-4), 7.39 (d, $J_{\text{H-H}}$ = 7.7 Hz, 1H, Py H-3), 7.25~7.35 (m, 1H, Py H-5), 4.50 (dd, $J_{\text{H-H}}$ = 7.0, 16.3 Hz, 1H, Py-CH'HN), 4.05 (d, J_{H-H} = 16.3 Hz, 1H, Py-CH'HN), 2.97 (d, J_{H-H} = 6.6 Hz, 1H, NHC(CH₃)₃), 1.18 (s, 9H, NHC(CH₃)₃), 0.89 (s, 3H, Pd-CH₃); *cis*-4a: δ 8.79 (d, J_{H-H} = 4.9 Hz, 1H, Py H-6), 7.73 (t, J_{H-H} = 7.7 Hz, 1H, Py H-4), 7.25~7.35 (m, 1H, Py H-3; 1H, Py H-5), 4.82 (dd, J_{H-H} = 6.4, 16.4 Hz, 1H, Py-CH'HN), 4.23 (d, $J_{H-H} = 16.3$ Hz, 1H, Py-CH'HN), 4.05 (1H, NHC(CH₃)₃), 1.21 (s, 9H, NHC(CH₃)₃), 0.67 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-4a: δ 164.69 (Py C-2), 148.18 (Py C-6), 138.07 (Py C-4), 123.81 (Py C-5), 122.05 (Py C-3), 55.73 (NHC(CH₃)₃), 50.97 (Py-CH₂N), 29.24 (NHC(CH₃)₃), 0.59 (Pd-CH₃); cis-4a: δ 159.18 (Py C-2), 148.40 (Py C-6), 138.12 (Py C-4), 123.51 (Py C-5), 120.36 (Py C-3), 58.75 (NHC(CH₃)₃), 54.30 (Py-CH₂N), 29.44 (NHC(CH₃)₃), -10.16 (Pd-CH₃). MS (FAB, m/z): 269.0 (M⁺¹ - CH₃- Cl). Anal. Calcd for C₁₁H₁₉N₂PdCl: C, 41.14; H, 5.92; N, 8.73. Found: C, 40.55; H, 5.72; N, 8.62.

[PhHNCH₂(*o*-C₆H₅N)]Pd(Me)Cl (5a) The synthesis was carried out according to the same procedure as for 3a, using (COD)PdMeCl (93 mg, 0.35 mmol) and L5a (64 mg, 0.35 mmol) to give the pale brown product 5a (106 mg, 89%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-5a: δ 8.34 (d, *J*_{H-H} = 5.6 Hz, 1H, Py H-6), 7.92 (dt, *J*_{H-H} = 1.5, 7.7 Hz, 1H, Py H-

4), 7.56 (d, J_{H-H} = 7.8 Hz, 1H, Py H-3), 7.37 (t, J_{H-H} = 6.7 Hz, 1H, Py H-5), 7.10~7.21 (m, 2H, m-Ar), 7.02 (t, J_{H-H} = 7.4 Hz, 1H, p-Ar), 6.97 (d, J_{H-H} = 7.6 Hz, 2H, o-Ar), 5.87 (bs, 1H, N*H*-Ar), 0.86 (s, 3H, Pd-C*H*₃); *cis*-5a: δ 8.73 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.73 (dt, J_{H-H} = 1.6, 7.7 Hz, 1H, Py H-4), 7.37 (1H, Py H-3), 7.21~7.32 (m, 2H, m-Ar; 2H, o-Ar), 7.10~7.21 (m, 1H, Py H-5; 1H, p-Ar), 5.02 (dd, J_{H-H} = 6.2, 16.3 Hz, 1H, Py-C*H*'HN), 4.49 (dd, J_{H-H} = 6.7, 16.4 Hz, 1H, Py-CH'*H*N), 0.24 (s, 3H, Pd-C*H*₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-5a: δ 163.82 (Py C-2), 148.38 (Py C-6), 146.05 (ipso-Ar), 138.46 (Py C-4), 129.19 (m-Ar), 124.07 (Py C-5), 123.89 (p-Ar), 122.38 (Py C-3), 118.61 (o-Ar), 55.50 (Py-CH₂N), -0.17 (Pd-CH₃); *cis*-5a: δ 158.39 (Py C-2), 147.93 (Py C-6), 147.20 (ipso-Ar), 137.83 (Py C-4), 129.19 (m-Ar), 125.79, 123.50 (Py C-5 and p-Ar), 121.85 (o-Ar), 121.59 (Py C-3), 62.86 (Py-CH₂N), -2.94 (Pd-CH₃). MS (FAB, m/z): 289.1 (M⁺¹ - CH₃ - Cl). Anal. Calcd for C₁₃H₁₅N₂PdCl: C, 45.90; H, 4.41; N, 8.24. Found: C, 46.20; H, 4.50; N, 8.21.

[(2,6-Me₂C₆H₃)HNCH₂(*o*-C₆H₅N)]Pd(Me)Cl (6a) The synthesis was carried out according to the same procedure as for **3a**, using (COD)PdMeCl (283 mg, 1.07 mmol) and L6a (227 mg, 1.07 mmol) to give the pale white product 6a (343 mg, 87%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *cis*-6a: δ 8.72 (d, *J*_{H-H} = 5.3 Hz, 1H, Py H-6), 7.70 (dt, *J*_{H-H} = 1.7, 7.8 Hz, 1H, Py H-4), 7.22 (d, *J*_{H-H} = 7.9 Hz, 1H, Py H-3), 7.00~7.16 (m, 1H, Py H-5; 2H, m-Ar; 1H, p-Ar), 6.68 (t, *J*_{H-H} = 7.5 Hz, 1H, NH-Ar), 5.07 (dd, *J*_{H-H} = 7.6, 17.3 Hz, 1H, Py-CH'HN), 4.29 (dd, *J*_{H-H} = 7.3, 17.3 Hz, 1H, Py-CH'HN), 2.91, 2.51 (s, 6H, Ar-CH₃), 0.10 (s, 3H, Pd-CH₃); trans-6a: δ 8.49 (d, *J*_{H-H} = 6.4 Hz, 1H, Py H-6), 7.88 (dt, *J*_{H-H} = 1.4, 7.8 Hz, 1H, Py H-4), 7.40 (t, *J*_{H-H} = 7.0 Hz, 1H, Py H-5), 7.34 (d, *J*_{H-H} = 7.3 Hz, 1H, Py H-3), 7.00~7.16 (2H, m-Ar; 1H, p-Ar), 1.00 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *cis*-6a: δ 158.37 (Py C-2), 147.80 (Py C-6), 143.21 (ipso-Ar), 137.58 (Py C-4), 130.82, 129.57 (o-Ar), 131.07, 123.29 (Py C-5 and p-Ar), 128.48, 125.97 (m-Ar), 120.16 (Py C-3), 59.87 (Py-CH₂N), 20.22, 18.96 (Ar-CH₃), -6.03 (Pd-CH₃); *trans-6a*: δ 147.96 (Py C-6), 138.10 (Py C-4), 125.30, 124.04, 122.13 (Py C-5, Py C-3 and p-Ar), 62.97 (Py-CH₂N), 0.15 (Pd-CH₃). MS (FAB,

m/z): 317.0 (M⁺¹ - CH₃ - Cl).

[(2.6-ⁱPr₂C₆H₃)HNCH₂(*o*-C₆H₅N)]Pd(Me)Cl (7a) The synthesis was carried out according to the same procedure as for 3a, using (COD)PdMeCl (50 mg, 0.19 mmol) and L7a (51 mg, 0.19 mmol) to give the pale vellow product 7a (59 mg, 73%). ¹H NMR (400 MHz, CDCl₃) for *cis*-7a: δ 8.72 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.70 (dt, J_{H-H} = 1.6, 7.8 Hz, 1H, Py H-4), 7.00~7.24 (m, 1H, Py H-3; 1H, Py H-5; 2H, m-Ar; 1H, p-Ar), 6.88 (t, *J*_{H-H} = 7.3 Hz, 1H, N*H*-Ar), 5.07 (dd, *J*_{H-H} = 7.6, 17.3 Hz, 1H, Py-C*H'*HN), 4.58, 3.46 (sept, $J_{\text{H-H}} = 6.7$, 6.6 Hz, 2H, Ar-CH(CH₃)₂), 4.30 (dd, $J_{\text{H-H}} = 7.3$, 17.3 Hz, 1H, Py-CH'HN), 1.43, 1.34, 1.33, 1.12 (d, J_{H-H} = 6.6, 6.4, 6.6, 6.9 Hz, 12H, Ar-CH(CH₃)₂), 0.12 (s, 3H, Pd-CH₃); trans-**7a**: δ 8.51 (d, $J_{\text{H-H}}$ = 5.6 Hz, 1H, Py H-6), 7.89 (t, $J_{\text{H-H}}$ = 7.8 Hz, 1H, Py H-4), 7.41 (t, $J_{\text{H-H}}$ = 7.1 Hz, 1H, Pv H-5), 7.34 (d, J_{H-H} = 8.0 Hz, 1H, Pv H-3), 7.00~7.24 (m, 2H, m-Ar; 1H, p-Ar), 5.19 (bs, 1H, NH-Ar), 5.31, 4.24 (2H, Py-CH'HN), 4.78, 3.61 (sept, J_{H-H} = 6.7, 6.6 Hz, 2H, Ar-CH(CH₃)₂), 1.71, 1.29 (d, J_{H-H} = 6.6, 6.8 Hz, 6H, Ar-CH(CH₃)₂), 1.20~1.40 (6H, Ar-CH(CH₃)₂), 1.02 (s, 3H, Pd-CH₃). 13 C NMR (100.625 MHz, CDCl₃) for *cis*-7a: δ 157.94 (Py C-2), 148.23 (Py C-6), 142.02 (ipso-Ar), 140.39, 140.07 (o-Ar), 137.50 (Py C-4), 126.82, 126.45, 123.42, 123.21, 120.17 (Py C-5, Py C-3, p-Ar and m-Ar), 62.38 (Py-CH₂N), 28.28, 27.82 (Ar-C(CH₃)₂), 25.11, 24.62, 24.10, 23.57 (Ar-C(CH₃)₂), -4.12 (Pd-CH₃); trans-7a: δ 167.33 (Py C-2), 149.97 (Py C-6), 139.96, 138.83, 138.75, 138.06 (ipso-Ar, o-Ar and Py C-4), 129.07, 127.95, 124.25, 123.58, 122.21 (Py C-5, Py C-3, p-Ar and m-Ar), 58.54 (Py-CH₂N), 28.54, 27.90 (Ar-C(CH₃)₂), 24.79, 22.61 (Ar-C(CH₃)₂), 0.95 (Pd-CH₃). MS (FAB, m/z): 373.1 (M⁺¹ - CH₃ - Cl). Anal. Calcd for C₁₉H₂₇N₂PdCl: C, 53.66; H, 6.35; N, 6.59. Found: C, 53.99; H, 6.43; N, 6.44.

[ⁱPrHNCMeH(*o*-C₆H₅N)]Pd(Me)Cl (3b) The synthesis was carried out according to the same procedure as for 3a, using (COD)PdMeCl (200 mg, 0.75 mmol) and L3b (124 mg, 0.75 mmol) to give the pale white product 3b (214 mg, 89%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-3b: δ 8.41 (d, *J*_{H-H} = 5.2 Hz, 1H, Py H-6), 7.84 (dt, *J*_{H-H} = 1.6, 7.7 Hz, 1H, Py H-4), 7.20~7.40 (1H, Py H-3; 1H, Py H-5), 4.14 (q, *J*_{H-H} = 6.8 Hz, 1H, Py-CH(CH₃)N), 3.05 (sept,

 $J_{\text{H-H}} = 6.6 \text{ Hz}, 1\text{H}, \text{NHC}H(\text{CH}_3)_2), 1.89 \text{ (d, } J_{\text{H-H}} = 6.8 \text{ Hz}, 3\text{H}, \text{Py-CH}(\text{C}H_3)\text{N}), 1.20~1.30 \text{ (m, 6H, NHCH}(\text{C}H_3)_2), 0.90 \text{ (s, 3H, Pd-C}H_3);$ *cis* $-3b: <math>\delta$ 8.84 (d, $J_{\text{H-H}} = 5.2 \text{ Hz}, 1\text{H}, \text{Py H-6}), 7.77 \text{ (dt, } J_{\text{H-H}} = 1.5, 7.7 \text{ Hz}, 1\text{H}, \text{Py H-4}), 7.20~7.40 \text{ (m, 1H, Py H-3}; 1\text{H}, \text{Py H-5}), 4.24 (q, <math>J_{\text{H-H}} = 6.7 \text{ Hz}, 1\text{H}, \text{Py-C}H(\text{C}H_3)\text{N}), 3.09 \text{ (sept, } J_{\text{H-H}} = 6.5 \text{ Hz}, 1\text{H}, \text{NHC}H(\text{C}H_3)_2), 1.89 \text{ (d, } J_{\text{H-H}} = 6.8 \text{ Hz}, 3\text{H}, \text{Py-CH}(\text{C}H_3)\text{N}), 1.20~1.30 \text{ (m, 6H, NHCH}(\text{C}H_3)_2), 0.59 \text{ (s, 3H, Pd-C}H_3). }^{13}\text{C} \text{NMR} (100.625 \text{ MHz}, \text{CDC}I_3) \text{ for$ *trans-* $3b: } 6 168.41 (Py C-2), 138.42 (Py C-4), 60.00 (Py-CH(CH_3)\text{N}), 52.26 (NHCH(CH_3)_2), 0.17 (Pd-CH_3);$ *cis* $-3b: } \delta 162.65 (Py C-2), 138.42 (Py C-4), 62.77 (Py-CH(CH_3)\text{N}), 55.22 (NHCH(CH_3)_2), -11.21 (Pd-CH_3); 148.71, 148.30 (Py C-6) 123.94, 123.70, 121.99, 120.38 (Py C-5 and Py C-3), 25.04, 24.51 (Py-CH(CH_3)\text{N}), 23.33, 22.97, 22.43, 22.28 (NHCH(CH_3)_2). MS (FAB, m/z): 269.0 (M^{+1} - \text{CH}_3 - \text{Cl}). Anal. Calcd for C₁₁H₁₉N₂PdCl: C, 41.18; H, 5.92; N, 8.73. Found: C, 40.89; H, 5.92; N, 8.53.$

[¹BuHNCMeH(*o***-C₆H₅N)]Pd(Me)Cl (4b)** The synthesis was carried out according to the same procedure as for **3a**, using (COD)PdMeCl (150 mg, 0.57 mmol) and **L4b** (101 mg, 0.57 mmol) to give the pale white product **4b** (167 mg, 87%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-**4b**: δ 8.38 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.83 (dt, J_{H-H} = 1.4, 7.7 Hz, 1H, Py H-4), 7.35 (d, J_{H-H} = 7.7 Hz, 1H, Py H-3), 7.25~7.35 (m, 1H, Py H-5), 4.30 (q, J_{H-H} = 6.7 Hz, 1H, Py C*H*(CH₃)N), 2.20 (s, 1H, N*H*C(CH₃)₃), 1.96 (d, J_{H-H} = 6.8 Hz, 3H, Py-CH(C*H*₃)N), 1.19 (s, 9H, NHC(C*H*₃)₃), 0.93 (s, 3H, Pd-C*H*₃); *cis*-**4b**: δ 8.80 (d, J_{H-H} = 4.5 Hz, 1H, Py H-6), 7.76 (dt, J_{H-H} = 1.6, 7.7 Hz, 1H, Py H-4), 7.25~7.35 (m, 2H, Py H-3); Py H-5), 4.39 (q, J_{H-H} = 6.7 Hz, 1H, Py-C*H*(CH₃)N), 2.93 (bs, 1H, N*H*C(CH₃)₃), 1.96 (d, J_{H-H} = 6.6 Hz, 3H, Py-CH(C*H*₃)N), 1.24 (s, 9H, NHC(C*H*₃)₃), 0.61 (s, 3H, Pd-C*H*₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-**4b**: δ 169.15 (Py C-2), 148.09 (Py C-6), 138.32 (Py C-4), 123.83 (Py C-5), 121.69 (Py C-3), 57.06 (Py-CH(CH₃)N), 55.80 (NHC(CH₃)₃), 29.44 (NHC(CH₃)₃), 24.79 (Py-CH(CH₃)N), 0.65 (Pd-CH₃); *cis*-**4b**: δ 163.31 (Py C-2), 148.43 (Py C-6), 138.28 (Py C-4), 123.58 (Py C-5), 120.12 (Py C-3), 60.14 (Py-CH(CH₃)N), 58.82 (NHC(CH₃)₃), 29.70 (NHC(CH₃)₃), 25.33 (Py-CH(CH₃)N), -10.79 (Pd-CH₃). MS (FAB, m/z): 283.0 (M⁺¹ - CH₃ - Cl). Anal.

Calcd for C₁₂H₂₁N₂PdCl: C, 43.19; H, 6.30; N, 8.40. Found: C, 42.38; H, 6.35; N, 8.57.

[PhHNCMeH(o-C₆H₅N)]Pd(Me)Cl (5b) The synthesis was carried out according to the same procedure as for 3a, using (COD)PdMeCl (265 mg, 1.00 mmol) and L5b (198 mg, 1.00 mmol) to give the pale white product **5b** (322 mg, 91%). ¹H NMR (400 MHz, CDCl₃) for *trans*-**5b**: δ 8.39 (d, J_{H-H}= 5.0 Hz, 1H, Py H-6), 7.95 (t, J_{H-H} = 7.7 Hz, 1H, Py H-4), 7.54 (d, J_{H-H} = 7.4 Hz, 1H, Py H-3), 7.40 (m, 1H, Py H-5), 7.19 (t, J_{H-H} = 7.8 Hz, 2H, m-Ar), 7.02 (t, J_{H-H} = 7.0 Hz, 1H, p-Ar), 6.88 (d, J_{H-H} = 7.6 Hz, 2H, o-Ar), 4.61 (m, 1H, NH-Ar; 1H, Py-CH(CH₃)N), 2.07 (d, $J_{H-H} = 6.4$ Hz, 3H, Py-CH(CH₃)N), 0.86 (s, 3H, Pd-CH₃); *cis*-5b: δ 8.83 (d, $J_{\text{H-H}}$ = 4.8 Hz, 1H, Py H-6), 7.81 (m, $J_{\text{H-H}}$ = 7.9 Hz, 1H, Py H-4), 7.26 (m, 1H, Py H-3; 1H, Py H-5), 7.19 (2H, o-Ar; 2H, m-Ar; 1H, p-Ar), 5.83 (d, *J*_{H-H} = 4.8 Hz, 1H, N*H*-Ar), 4.61 (1H, Pv-CH(CH₃)N), 1.82 (d, J_{H-H} = 6.6 Hz, 3H, Pv-CH(CH₃)N), 0.25 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-5b: δ 167.58 (Py C-6), 148.67 (Py C-2), 145.25 (ipso-Ar), 138.79 (Py C-4), 129.30 (m-Ar), 124.33(Py C-3), 123.88 (p-Ar), 122.10(Py C-5), 118.20 (o-Ar), 61.70 (Py-CH(CH₃)N), 23.95 (Py-CH(CH₃)N), -0.04 (Pd-CH₃); for *cis*-5b: δ 161.29 (Py C-6), 148.67 (Py C-2), 146.01 (ipso-Ar), 138.24 (Py C-4),129.30 (m-Ar), 125.85 (Py C-3), 123.95 (p-Ar), 121.86 (Py C-5), 120.95 (o-Ar), 68.11 (Py-CH(CH₃)N), 24.05 (Py-CH(CH₃)N), -4.49 (Pd-CH₃). MS (ESI/MS, m/z): 319.3 (M⁺¹ - Cl). Anal. Calcd for C₁₄H₁₇N₂PdCl: C, 47.34; H, 4.79; N, 7.89. Found: C, 46.97; H, 4.53; N, 7.83.

[(2,6-Me₂C₆H₃)HNCMeH(*o*-C₆H₅N)]Pd(Me)Cl (6b) The synthesis was carried out according to the same procedure as for **3a**, using (COD)PdMeCl (265 mg, 1.00 mmol) and L6b (226 mg, 1.00 mmol) to give the pale white product 6b (332 mg, 87%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *cis*-6b: δ 9.10 (d, J_{H-H} = 4.9 Hz, 1H, Py H-6), 7.86 (dt, J_{H-H} = 1.7, 7.7 Hz, 1H, Py H-4), 7.40 (t, J_{H-H} = 7.3 Hz, 1H, Py H-5), 7.30 (d, J_{H-H} = 8.0 Hz, 1H, Py H-3), 7.15 (m, 1H, p-Ar), 7.07 (m, 2H, m-Ar), 5.50 (d, J_{H-H} = 7.9 Hz, 1H, N*H*-Ar), 4.69 (m, 1H, Py-C*H*(CH₃)N), 2.91, 2.38 (s, 6H, Ar-CH₃), 1.62 (d, J_{H-H} = 6.8 Hz, 3H, Py-CH(CH₃)N), 0.13 (s, 3H, Pd-CH₃); *trans*-6b: δ 8.54 (d,

 $J_{\text{H-H}}$ = 5.8 Hz, 1H, Py H-6), 7.91 (dt, $J_{\text{H-H}}$ = 1.6, 7.8 Hz, 1H, Py H-4), 7.40 (1H, Py H-5), 7.34 (1H, Py H-3), 7.03 (m, 2H, m-Ar), 6.95 (m, 1H, p-Ar), 4.69 (1H, N*H*-Ar), 4.43 (m, 1H, Py-*CH*(CH₃)N), 2.51 (bs, 6H, Ar-*CH₃*), 1.75 (d, $J_{\text{H-H}}$ = 6.9 Hz, 3H, Py-CH(*CH₃*)N), 1.03 (s, 3H, Pd-*CH₃*). ¹³C NMR (100.625 MHz, CDCl₃) for *cis*-6b: δ 160.39 (Py C-2), 148.79 (Py C-6), 141.10 (ipso-Ar), 138.31 (Py C-4), 131.73 (p-Ar), 130.45, 129.20 (o-Ar), 128.58, 126.16 (m-Ar), 124.07 (Py C-5), 121.04 (Py C-3), 65.17 (Py-*C*H(CH₃)N), 20.42, 18.73 (Ar-*C*H₃), 19.79 (Py-CH(*C*H₃)N), -5.18 (Pd-*C*H₃); *trans*-6b: δ 167.23 (Py C-2), 147.89 (Py C-6), 138.31 (Py C-4), 128.60, 128.52, 128.29, 126.55, 124.90, 124.78 (Py C-5, m-Ar, o-Ar and p-Ar), 122.64(Py C-3), 63.05 (Py-*C*H(CH₃)N), 22.75 (Py-CH(*C*H₃)N), 17.80, 17.34 (Ar-*C*H₃), 0.19 (Pd-*C*H₃). MS (ESI/MS, m/z): 331.0 (M⁺¹ - CH₃ - Cl). Anal. Calcd for C₁₆H₂₁N₂PdCl: C, 50.15; H, 5.48; N, 7.31. Found: C, 49.50; H, 5.63; N, 7.12.

[(2,6-¹Pr₂C₆H₃)HNCMeH(*o*-C₆H₅N)]Pd(Me)Cl (7b) The synthesis was carried out according to the same procedure as for **3a**, using (COD)PdMeCl (50 mg, 0.19 mmol) and **L7b** (54 mg, 0.19 mmol) to give the pale white product **7b** (70 mg, 84%). Single crystals were grown from Et₂O/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *cis*-**7b**: δ 9.15 (d, *J*_{H-H} = 5.3 Hz, 1H, Py H-6), 7.87 (dt, *J*_{H-H} = 1.6, 7.8 Hz, 1H, Py H-4), 7.41 (ddd, *J*_{H-H} = 0.9, 5.3, 7.5 Hz, 1H, Py H-5), 7.32 (d, *J*_{H-H} = 8.0 Hz, 1H, Py H-3), 7.10~7.30 (m, 2H, m-Ar; 1H, p-Ar), 5.80 (d, *J*_{H-H} = 9.3 Hz, 1H, NH-Ar), 4.64 (m, 1H, Py-CH(CH₃)N), 4.56, 2.97 (sept, *J*_{H-H} = 6.7, 6.7 Hz, 2H, Ar-CH(CH₃)₂), 1.56 (d, *J*_{H-H} = 6.8 Hz, 3H, Py-CH(CH₃)N), 1.42, 1.37, 1.29, 1.21 (d, *J*_{H-H} = 6.6, 6.6, 6.7, 6.8 Hz, 12H, Ar-CH(CH₃)₂), 0.26 (s, 3H, Pd-CH₃); *trans*-**7b**: δ 8.56 (d, *J*_{H-H} = 5.4 Hz, 1H, Py H-6), 7.92 (dt, *J*_{H-H} = 1.5, 7.7 Hz, 1H, Py H-4), 7.41 (1H, Py H-5), 7.34 (1H, Py H-3), 7.10~7.30 (m, 2H, m-Ar; 1H, p-Ar), 4.84 (d, *J*_{H-H} = 6.5 Hz, 1H, NH-Ar), 4.35 (m, 1H, Py-CH(CH₃)N), 3.08 (sept, *J*_{H-H} = 6.7 Hz, 2H, Ar-CH(CH₃)₂), 1.37 (6H, Ar-CH(CH₃)₂), 1.01 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *cis*-**7b**: δ 159.94 (Py C-2), 148.94 (Py C-6), 141.74 (ipso-Ar), 138.32 (Py C-4), 140.12, 137.66 (o-Ar), 126.97, 126.70, 124.15, 123.41, 121.21 (Py C-5, Py C-3, m-Ar)

and p-Ar), 66.51 (Py-CH(CH₃)N), 28.42, 28.39 (Ar-CH(CH₃)₂), 24.89, 24.49, 24.13, 23.57 (Ar-CH(CH₃)₂), 18.52 (Py-CH(CH₃)N), -3.00 (Pd-CH₃); *trans*-7b: δ 166.09 (Py C-2), 148.20 (Py C-6), 141.79, 140.64, 138.91, 138.20 (ipso-Ar, o-Ar and Py C-4), 125.99, 125.85, 123.83, 123.15, 122.75 (Py C-5, Py C-3, m-Ar and p-Ar), 63.81 (Py-C(CH₃)N), 28.77, 28.53 (Ar-CH(CH₃)₂), 24.28, 23.36 (Ar-CH(CH₃)₂), 20.69 (Py-CH(CH₃)N), -0.06 (Pd-CH₃). MS (FAB/MS, m/z): 387.1 (M⁺¹ - CH₃ - Cl). Anal. Calcd for C₂₀H₂₉N₂PdCl: C, 54.69; H, 6.61; N, 6.38. Found: C, 54.48; H, 6.50; N, 6.38.

{[¹PrHNCH₂(*o*-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (3a') A Schlenk flask was charged with complex 3a (120 mg, 0.39 mmol) and AgBF₄ (76 mg, 0.39 mmol) in a glovebox, followed with CH₂Cl₂ (15 mL) and MeCN (1 mL). The mixture was stirred at 25 °C for 2 h. The residue of AgCl and Pd were removed by filtering through celite. The resulting pale yellow solution was concentrated in vacuo and then precipitated by addition of Et₂O (20 mL). After filtration, the crude product was washed with Et₂O (2×5 mL) and dried in *vacuo*. The desired air-sensitive complex was obtained as pale white powder in 56% yield (87 mg). Alternatively, one-pot reaction with (COD)PdMeCl, AgBF₄, L3a, CH₂Cl₂ and MeCN also provided the desired product. Single crystals were grown from Et₂O/MeCN/CH₂Cl₂ solution. ¹H NMR (400 MHz, CDCl₃) for *trans*-3a': δ 8.26 (d, J_{H-H} = 5.6 Hz, 1H, Py H-6), 7.91 (t, J_{H-H} = 7.7 Hz, 1H, Py H-4), 7.50 (d, J_{H-H} = 7.9 Hz, 1H, Py H-3), 7.37 (t, J_{H-H} = 6.6 Hz, 1H, Py H-5), 4.51 (dd, J_{H-H} = 6.3, 16.5 Hz, 1H, Py-CH'HN), 4.14 (bs, 1H, NHCH(CH₃)₂), 3.97 (d, J_{H-H} = 16.5 Hz, 1H, Py-CH'HN), 2.89 $(qd, J_{H-H} = 6.3, 6.4 Hz, 1H, NHCH(CH_3)_2), 2.39 (s, 3H, NCCH_3), 1.22, 1.14 (d, J_{H-H} = 6.3, 6.4 Hz, 6H, 1.20)$ NHCH(CH₃)₂), 0.79 (s, 3H, Pd-CH₃); *cis*-3a': δ 8.42 (d, J_{H-H} = 4.9 Hz, 1H, Py H-6), 7.84 (t, J_{H-H} = 7.8 Hz, 1H, Py H-4), 7.46 (d, *J*_{H-H} = 6.4 Hz, 1H, Py H-3), 7.43 (t, *J*_{H-H} = 7.6 Hz, 1H, Py H-5), 4.65 (bs, 1H, N*H*CH(CH₃)₂), 4.63 (dd, *J*_{H-H} = 5.9, 16.7 Hz, 1H, Py-C*H*'HN), 4.12 (d, *J*_{H-H} = 16.6 Hz, 1H, Py-CH'*H*N), 3.03 (m, 1H, NHC*H*(CH₃)₂), 2.45 (s, 3H, NCC*H*₃), 1.17 (d, *J*_{H-H} = 6.5 Hz, 3H, NHCH(C*H*₃)₂), 1.12~1.15 (3H, NHCH(CH₃)₂), 0.65 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-3a': δ 164.80 (Py C-2), 148.28 (Py C-6), 139.66 (Py C-4), 124.12 (Py C-5), 122.09 (Py C-3), 53.85 (Py-CH₂N), 52.44

(NHCH(CH₃)₂), 22.48, 21.39 (NHCH(CH₃)₂), 3.25 (NCCH₃), 1.82 (Pd-CH₃); *cis*-3a': δ 158.97 (Py C-2), 148.38 (Py C-6), 139.21 (Py C-4), 124.38 (Py C-5), 121.56 (Py C-3), 56.68 (Py-CH₂N), 55.37 (NHCH(CH₃)₂), 22.41, 21.78 (NHCH(CH₃)₂), 3.18 (NCCH₃), -7.32 (Pd-CH₃). MS (FAB, m/z): 312.0 (M⁺¹), 271.0 (M⁺¹ - CH₃), 254.9 (M⁺¹ - CH₃- NCCH₃). Anal. Calcd for C₁₂H₂₀N₃PdBF₄: C, 36.07; H, 5.01; N, 10.52. Found: C, 35.89; H, 4.73; N, 10.52.

{[^tBuHNCH₂(*o*-C₆H₃N)]Pd(Me)(NCMe)}(BF₄) (4a') The synthesis was carried out according to the same procedure as for **3a**', using **4a** (200 mg, 0.60 mmol) and AgBF₄ (116 mg, 0.60 mmol) to give the pale white product **4a**' (164 mg, 66%). Single crystals were grown from Et₂O/MeCN/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-**4a**': δ 8.26 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.89 (dt, J_{H-H} = 1.5, 7.7 Hz, 1H, Py H-4), 7.50 (d, J_{H-H} = 7.8 Hz,1H, Py H-3), 7.34 (t, J_{H-H} = 6.6 Hz, 1H, Py H-5), 4.52 (dd, J_{H-H} = 7.2, 17.1 Hz, 1H, Py-CH/HN), 4.39 (d, J_{H-H} = 7.1 Hz, 1H, NHC(CH₃)₃), 4.11 (d, J_{H-H} = 17.1 Hz, 1H, Py-CH/HN), 2.42 (s, 3H, NCCH₃), 1.61 (s, 9H, NHC(CH₃)₃), 0.81 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-**4a**': δ 166.39 (Py C-2), 148.00 (Py C-6), 139.64 (Py C-4), 123.87 (Py C-5), 122.60 (Py C-3), 56.05 (NHC(CH₃)₃), 50.81 (Py-CH₂N), 28.60 (NHC(CH₃)₃), 3.38 (NCCH₃), 2.07 (Pd-CH₃). MS (FAB, m/z): 268.9 (M⁺¹ - CH₃- NCCH₃). Anal. Calcd for C₁₃H₂₂N₃PdBF₄: C, 37.75; H, 5.32; N, 10.16.

{[PhHNCH₂(*o*-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (5a') The synthesis was carried out according to the same procedure as for **3a**', using **5a** (150 mg, 0.44 mmol) and AgBF₄ (86 mg, 0.44 mmol) to give the pale white product **5a**' (100 mg, 52%). Single crystals were grown from Et₂O/MeCN/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-**5a**': δ 8.27 (d, *J*_{H-H} = 5.7 Hz, 1H, Py H-6), 8.01 (dt, *J*_{H-H} = 1.6, 7.7 Hz, 1H, Py H-4), 7.63 (d, *J*_{H-H} = 7.9 Hz, 1H, Py H-3), 7.43 (t, *J*_{H-H} = 6.4 Hz, 1H, Py H-5), 7.25 (t, *J*_{H-H} = 7.7 Hz, 2H, m-Ar), 7.08 (dt, *J*_{H-H} = 1.1, 7.4 Hz, 1H, p-Ar), 6.93 (d, *J*_{H-H} = 8.4 Hz, 2H, o-Ar), 6.59 (d, *J*_{H-H} = 6.1 Hz, 1H, N*H*-Ar), 4.93 (dd, *J*_{H-H} = 6.4, 16.7 Hz, 1H, Py-CH'HN), 4.36 (d, *J*_{H-H} = 16.1 Hz, 1H, Py-CH'HN), 2.34 (s, 3H, NCCH₃), 0.89 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-**5a**': δ

164.65 (Py C-2), 148.35 (Py C-6), 146.14 (ipso-Ar), 139.96 (Py C-4), 129.57 (m-Ar), 124.42 (p-Ar), 124.35 (Py C-5), 122.99 (Py C-3), 118.87 (o-Ar), 57.84 (Py-*C*H₂N), 3.25 (NC*C*H₃), 2.02 (Pd-*C*H₃). MS (FAB, m/z): 305.0 (M⁺¹ - CH₃). Anal. Calcd for C₁₅H₁₈N₃PdBF₄: C, 41.55; H, 4.15; N, 9.69. Found: C, 41.82; H, 3.86; N, 9.59.

{[(2,6-Me₂C₆H₃)HNCH₂(*o*-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (6a') The synthesis was carried out according to the same procedure as for 3a', using 6a (200 mg, 0.54 mmol) and AgBF₄ (105 mg, 0.54 mmol) to give the pale white product **6a**' (207 mg, 83%). ¹H NMR (400 MHz, CDCl₃) for *trans*-6a': δ 8.31 (d, J_{H-H} = 5.8 Hz, 1H, Py H-6), 7.94 (dt, J_{H-H} = 1.5, 7.8 Hz, 1H, Py H-4), 7.52 (1H, Py H-3), 7.41 (1H, Py H-5), 6.95~7.15 (m, 2H, m-Ar; 1H, p-Ar), 5.89 (t, J_{H-H} = 7.6 Hz, 1H, NH-Ar), 4.82 (1H, Py-CH'HN), 4.48 (dd, $J_{\text{H-H}} = 9.3$, 17.1 Hz, 1H, Py-CH'HN), 2.76 (bs, 6H, Ar-CH₃), 1.85 (s, 3H, NCCH₃), 0.98 (s, 3H, Pd-CH₃); *cis*-6a': δ 8.49 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.87 (dt, J_{H-H} = 1.6, 7.8 Hz, 1H, Py H-4), 7.51 (1H, Py H-5), 7.40 (1H, Py H-3), 6.95~7.15 (m, 2H, m-Ar; 1H, p-Ar), 6.48 (t, J_{H-H} = 7.7 Hz, 1H, NH-Ar), 4.82 (dd, $J_{H-H} = 6.5$, 16.9 Hz, 1H, Py-CH'HN), 4.40 (dd, $J_{H-H} = 8.4$, 16.6 Hz, 1H, Py-CH'HN), 2.90, 2.42 (s, 6H, Ar-CH₃), 2.45 (s, 3H, NCCH₃), 0.17 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans-6a*': δ 163.47 (Py C-2), 147.75 (Py C-6), 141.55 (ipso-Ar), 139.62 (Py C-4), 125.60 (p-Ar), 124.24 (Py C-5), 123.40 (Py C-3), 55.00 (Py-CH₂N), 2.74 (NCCH₃), 2.15 (Pd-CH₃); cis-6a': δ 157.36 (Py C-2), 148.33 (Py C-6), 141.63 (ipso-Ar), 139.09 (Py C-4), 131.20 (p-Ar), 124.60 (Py C-5), 121.44 (Py C-3), 60.51 (Py-CH₂N), 3.37 (NCCH₃), -1.35 (Pd-CH₃); 130.09, 129.99, 129.91, 129.82 (o-Ar), 128.92, 126.74 (m-Ar), 20.15, 19.70, 18.06, 18.00 (Ar-CH₃). MS (FAB, m/z): 374.1 (M⁺¹). 317.0 (M⁺¹ - CH₃ - NCCH₃). Anal. Calcd for C₁₇H₂₂N₃PdBF₄: C, 44.24; H, 4.77; N, 9.11. Found: C, 43.93; H, 4.85; N, 9.20.

{[(2,6-ⁱPr₂C₆H₃)HNCH₂(*o*-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (7a') The synthesis was carried out according to the same procedure as for 3a', using 7a (150 mg, 0.35 mmol) and AgBF₄ (69 mg, 0.35 mmol) to give the pale white product 7a' (120 mg, 66%). ¹H NMR (400 MHz, CDCl₃) for *trans*-7a': δ

17

8.33 (d, $J_{\text{H-H}}$ = 6.1 Hz, 1H, Py H-6), 7.95 (dt, $J_{\text{H-H}}$ = 1.5, 7.8 Hz, 1H, Py H-4), 7.55 (d, $J_{\text{H-H}}$ = 7.9 Hz, 1H, Py H-3), 7.43 (t, $J_{\text{H-H}}$ = 6.4 Hz, 1H, Py H-5), 7.00~7.30 (m, 2H, m-Ar; 1H, p-Ar), 5.98 (t, $J_{\text{H-H}}$ = 8.3 Hz, 1H, NH-Ar), 4.88 (dd, $J_{\text{H-H}}$ = 6.1, 16.9 Hz, 1H, Py-CH'HN), 4.54, 3.40 (bs, 2H, Ar-CH(CH₃)₂), 4.33 (dd, $J_{\text{H-H}} = 9.5, 17.4 \text{ Hz}, 1\text{H}, \text{Py-CH'}H\text{N}$, 1.81 (s, 3H, NCCH₃), 1.43, 1.37, 1.31 (d, $J_{\text{H-H}} = 6.6, 6.6, 6.8 \text{ Hz}$, 12H, Ar-CH(CH₃)₂), 0.97 (s, 3H, Pd-CH₃); cis-7a': δ 8.65 (d, J_{H-H} = 5.1 Hz, 1H, Py H-6), 7.89 (t, J_{H-H} = 8.34 Hz, 1H, Py H-4), 7.65 (t, *J*_{H-H} = 6.5 Hz, 1H, Py H-5), 7.39 (d, *J*_{H-H} = 7.9 Hz, 1H, Py H-3), 7.00~7.30 (m, 2H, m-Ar; 1H, p-Ar), 6.45 (t, $J_{H-H} = 7.2$ Hz, 1H, NH-Ar), 4.71 (dd, $J_{H-H} = 6.0$, 16.8 Hz, 1H, Py-CH'HN), 4.46, 3.16 (sept, $J_{H-H} = 6.8$, 6.9 Hz, 2H, Ar-CH(CH₃)₂), 4.42 (dd, $J_{H-H} = 6.4$, 16.0 Hz, 1H, Py-CH'HN, 2.49 (s, 3H, NCCH₃), 1.10~1.50 (12H, Ar-CH(CH₃)₂), 0.29 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans-*7a': δ 163.49 (Py C-2), 147.80 (Py C-6), 139.69 (Py C-4), 126.51, 124.34, 123.43, 121.26 (p-Ar, m-Ar, Py C-5 and Py C-3), 57.80 (Py-CH₂N), 28.00 (Ar-C(CH₃)₂), 24.98, 24.19, 23.93, 23.86 (Ar-C(CH₃)₂), 2.61 (NCCH₃), 2.11 (Pd-CH₃); cis-7a': δ 149.02 (Py C-6), 139.20 (Py C-4), 127.68, 126.58, 125.13, 123.64 (p-Ar, m-Ar, Py C-5 and Py C-3), 63.04 (Py-CH₂N), 28.26 (Ar-C(CH₃)₂), 23.27, 22.59 (Ar-C(CH₃)₂), 3.43 (NCCH₃), 0.63 (Pd-CH₃); 131.38, 140.17, 138.90, 138.18 (ipso-Ar and o-Ar). MS (FAB, m/z): 430.2 (M⁺¹), 373.1 (M⁺¹ - CH₃ - NCCH₃). Anal. Calcd for C₂₁H₃₀N₃PdBF₄: C, 48.89; H, 5.82; N, 8.15. Found: C, 48.59; H, 5.53; N, 7.54.

{['PrHNCMeH(o-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (3b') The synthesis was carried out according to the same procedure as for 3a', using 3b (300 mg, 0.93 mmol) and AgBF₄ (182 mg, 0.93 mmol) to give the pale white product 3b' (290 mg, 75%). Single crystals were grown from Et₂O/MeCN/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) for *trans*-3b': δ 8.27 (d, $J_{\text{H-H}}$ = 5.3 Hz, 1H, Py H-6), 7.88 (dt, $J_{\text{H-H}}$ = 1.4, 7.7 Hz, 1H, Py H-4), 7.46 (d, $J_{\text{H-H}}$ = 7.8 Hz, 1H, Py H-3), 7.33 (dt, $J_{\text{H-H}}$ = 1.2, 7.2 Hz, 1H, Py H-5), 4.22 (q, $J_{\text{H-H}}$ = 6.7 Hz, 1H, Py-CH(CH₃)N), 2.83 (qd, $J_{\text{H-H}}$ = 6.4, 12.9 Hz, 1H, NHCH(CH₃)₂), 2.39 (s, 3H, NCCH₃), 1.87 (d, $J_{\text{H-H}}$ = 6.5 Hz, 3H, Py-CH(CH₃)N), 1.23, 1.16 (d, $J_{\text{H-H}}$ = 6.4, 6.5 Hz, 6H, NHCH(CH₃)₂), 0.81 (s, 3H, Pd-CH₃); *cis*-3b': δ 8.42 (d, $J_{\text{H-H}}$ = 5.3 Hz, 1H, Py H-6), 7.88 (dt, $J_{\text{H-H}}$ = 0.8,

7.7 Hz, 1H, Py H-4), 7.46 (t, J_{H-H} = 6.4 Hz, 1H, Py H-5), 7.43 (d, J_{H-H} = 7.9 Hz, 1H, Py H-3), 4.32 (q, J_{H-H} = 6.7 Hz, 1H, Py-CH(CH₃)N), 3.02 (qd, J_{H-H} = 6.4, 11.6 Hz, 1H, NHCH(CH₃)₂), 2.44 (s, 3H, NCCH₃), 1.82 (d, J_{H-H} = 6.7 Hz, 3H, Py-CH(CH₃)N), 1.52, 1.13 (d, J_{H-H} = 6.5, 6.5 Hz, 6H, NHCH(CH₃)₂), 0.66 (s, 3H, Pd-CH₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-3b': δ 168.69 (Py C-2), 148.38 (Py C-6), 139.61 (Py C-4), 124.05 (Py C-5), 122.68 (Py C-3), 60.86 (Py-CH(CH₃)N), 52.45 (NHCH(CH₃)₂), 23.80 (Py-CH(CH₃)N), 22.78, 21.50 (NHCH(CH₃)₂), 3.29 (NCCH₃), 1.58 (Pd-CH₃); *cis*-3b': δ 162.99 (Py C-2), 148.55 (Py C-6), 139.61 (Py C-4), 124.54 (Py C-5), 121.52 (Py C-3), 64.08 (Py-CH(CH₃)N), 55.67 (NHCH(CH₃)₂), 24.68 (Py-CH(CH₃)N), 23.29, 22.23 (NHCH(CH₃)₂), 3.23 (NCCH₃), -8.20 (Pd-CH₃). MS (FAB, m/z): 326.0 (M⁺¹), 269.0 (M⁺¹ - CH₃ - NCCH₃). Anal. Calcd for C₁₃H₂₂N₃PdBF₄: C, 37.83; H, 5.34; N, 10.19. Found: C, 37.54; H, 5.00; N, 9.93.

{[^tBuHNCMeH(*o*-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (4b') The synthesis was carried out according to the same procedure as for **3a'**, using **4b** (130 mg, 0.39 mmol) and AgBF₄ (76 mg, 0.39 mmol) to give the pale white product **4b'** (90 mg, 54%). Single crystals were grown from Et₂O/MeCN/CH₂Cl₂. ¹H NMR (100 MHz, CDCl₃) for *trans*-**4b'**: δ 8.24 (d, *J*_{H-H}= 5.5Hz, 1H, Py H-6), 7.87 (dt, *J*_{H-H}= 1.3, 7.7Hz, 1H, Py H-4), 7.45 (d, *J*_{H-H}= 7.9Hz, 1H, Py H-3), 7.31 (dt, *J*_{H-H}= 1.3, 7.2Hz, 1H, Py H-5), 4.34 (q, *J*_{H-H}= 6.8Hz, 1H, Py-C*H*(CH₃)N), 3.92 (bs, 1H, N*H*C(CH₃)₃), 2.42 (s, 3H, NCC*H*₃), 1.91 (d, *J*_{H-H}= 6.8Hz, 3H, Py-CH(C*H*₃)N), 1.15 (s, 9H, NHC(C*H*₃)₃), 0.79 (s, 3H, Pd-C*H*₃). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-**4b'**: δ 171.19 (Py C-3), 147.96 (Py C-6), 139.74 (Py C-4), 123.78 (Py C-5), 122.24 (Py C-3), 57.51 (Py-CH(CH₃)N), 56.26 (NHC(CH₃)₃), 28.70 (NHC(CH₃)₃), 24.36 (Py-CH(CH₃)N), 3.45 (NCCH₃), 2.09 (Pd-CH₃). MS (FAB, m/z): 340.0 (M⁺¹), 283.0 (M⁺¹ - CH₃ - NCCH₃). Anal. Calcd for C₁₄H₂₄N₃PdBF₄: C, 39.46; H, 5.64; N, 9.86. Found: C, 39.35; H, 5.45; N, 10.32.

{[PhHNCMeH(o-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (5b') The synthesis was carried out according to the same procedure as for 3a', using 5b (250 mg, 0.71 mmol) and AgBF₄ (138 mg, 0.71 mmol) to give the pale white product 5b' (206 mg, 58%). ¹H NMR (400 MHz, CD₃CN) for *trans*-5b': δ 8.32 (d, *J*_{H-H}

19

= 5.4 Hz, 1H, Py H-6), δ 8.11 (dt, J_{H+H} = 1.3, 7.8 Hz, 1H, Py H-4), δ 7.71 (d, J_{H+H} = 7.9 Hz, 1H, Py H-3), δ 7.51 (t, J_{H+H} = 6.2 Hz, 1H, Py H-5), δ 7.31 (t, J_{H+H} = 6.2 Hz, 2H, m-Ar), δ 7.12 (t, J_{H+H} = 7.4 Hz, 1H, p-Ar), δ 6.89 (d, J_{H+H} = 7.9 Hz, 2H, o-Ar), δ 5.78 (bs, 1H, N*H*-Ar), δ 4.79 (dq, J_{H+H} = 2.8, 6.7 Hz 1H, Py-C*H*(CH₃)N), δ 1.97 (m, 3H, NCC*H₃*), δ 1.77 (m, J_{H+H} = 6.4 Hz, 3H, Py-CH(C*H₃*)N), δ 0.91 (s, 3H, Pd-C*H*₃); *cis*-5b': δ 8.50 (d, J_{H+H} = 4.7 Hz, 1H, Py H-6), δ 8.06 (m, 1H, Py H-4), δ 7.49 ~ 7.58 (m, 1H, Py H-3; 1H, Py H-5), δ 7.27 (m, 2H, o-Ar), δ 7.21 (t, J_{H+H} = 7.3 Hz, 1H, p-Ar), δ 7.05 (d, J_{H+H} = 7.9 Hz, 2H, m-Ar), δ 6.15 (bs, 1H, N*H*-Ar), δ 4.69 (m, 1H, Py-C*H*(CH₃)N), δ 2.16 (s, 3H, NCC*H₃*), δ 1.77 (m, 3H, Py-CH(C*H₃*)N), δ 0.56 (s, 3H, Pd-C*H₃*). ¹³C NMR (100.625 MHz, D⁶-acetone) for *trans*-5b': δ 168.94 (Py C-2), 149.74 (Py C-6), 146.44 (ipso-Ar), 141.80 (Py C-4), 130.33 (m-Ar), 125.86 (Py C-5), 125.03 (p-Ar), 124.34 (Py C-3), 122.34 (NCCH₃), 119.97 (o-Ar), 62.37 (Py-CH(CH₃)N), 22.26 (Py-CH(CH₃)N), 2.77 (NCCH₃), 1.39 (Pd-CH₃); for *cis*-5b': δ 163.72 (Py C-2), 149.67 (Py C-6), 147.25 (ipso-Ar), 141.18 (Py C-4), 130.49 (m-Ar), 127.10, 125.79, 123.91, 123.15 (Py C-5, p-Ar, Py C-3, o-Ar), 70.01 (Py-CH(CH₃)N), 22.77 (Py-CH(CH₃)N), 3.15 (NCCH₃), -4.04 (Pd-CH₃). Anal. Calcd for C₁₆H₂₀BF₄N₃Pd: C, 42.94; H, 4.50; N, 9.39. Found: C, 43.94; H, 4.85; N, 8.66.

{[(2,6-Me₂C₆H₃)HNCMeH(o-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (6b') The synthesis was carried out according to the same procedure as for 3a', using 6b (100 mg, 0.26 mmol) and AgBF₄ (51 mg, 0.26 mmol) to give the pale white product 6b' (60 mg, 48%). Single crystals were grown from Et₂O/MeCN/CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃, 298K) for *trans*-6b': δ 8.37 (d, J_{H-H} = 5.7 Hz, 1H, Py H-6), 8.04 (dt, J_{H-H} = 1.5, 7.9 Hz, 1H, Py H-4), 7.54 (d, J_{H-H} = 7.9 Hz, 1H, Py H-3), 7.47 (d, J_{H-H} = 6.6 Hz, 1H, Py H-5), 6.95~7.20 (m, 2H, m-Ar; 1H, p-Ar), 5.20 (bs, 1H, NH-Ar), 4.82 (qd, J_{H-H} = 6.7, 9.5 Hz, 1H, Py-C*H*(CH₃)N), 1.84 (NCCH₃), 0.95 (s, 3H, Pd-CH₃); *cis*-6b': δ 8.62 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.95 (dt, J_{H-H} = 1.6, 8.0 Hz, 1H, Py H-4), 7.60 (dt, J_{H-H} = 1.1, 6.5 Hz, 1H, Py H-5), 7.42 (1H, J_{H-H} = 7.9 Hz, Py H-3), 6.95~7.20 (m, 2H, m-Ar; 1H, p-Ar), 5.69 (d, J_{H-H} = 9.0 Hz, 1H, Py-C*H*(CH₃)N), 4.71 (qd, J_{H-H} = 7.1, 7.4 Hz, 1H, Py-C*H*(CH₃)N), 2.85, 2.36 (s, 6H, Ar-CH₃), 2.48 (NCCH₃), 0.09 (s, 3H, Pd-CH₃)

CH₃). 1.60 (m, 6H, Py-CH(CH₃)N). ¹H NMR (500 MHz, CD₂Cl₂, 253K) for *trans*-6b': δ 8.37 (d, J_{H-H}= 5.7 Hz, 1H, Py H-6), 8.04 (dt, $J_{\text{H-H}}$ = 1.5, 7.9 Hz, 1H, Py H-4), 7.52 (m, 1H, Py H-3; 1H, Py H-5), $7.20 \sim 7.20$ (m, 2H, m-Ar; 1H, p-Ar), 4.90 (d, $J_{\text{H-H}} = 10.8$ Hz, 1H, NH-Ar), 4.84 (m, 1H, Py-CH(CH₃)N), 3.01, 2.34 (s, 6H, Ar-CH₃), 1.79 (NCCH₃), 0.92 (s, 3H, Pd-CH₃); cis-6b': δ 8.62 (d, J_{H-H} = 5.3 Hz, 1H, Py H-6), 7.95 (dt, J_{H-H} = 1.6, 8.0 Hz, 1H, Py H-4), 7.60 (t, J_{H-H} = 6.5 Hz, 1H, Py H-5), 7.43 (1H, J_{H-H} = 8.0 Hz, Py H-3), 7.00~7.20 (m, 2H, m-Ar; 1H, p-Ar), 5.63 (d, J_{H-H} = 9.2 Hz, 1H, NH-Ar), 4.72 (m, 1H, Py-CH(CH₃)N), 2.87, 2.33 (s, 6H, Ar-CH₃), 2.45 (NCCH₃), 0.04 (s, 3H, Pd-CH₃); 1.55 (d, $J_{H-H} = 6.6$ Hz, 6H, Py-CH(CH₃)N). ¹³C NMR (100.625 MHz, CDCl₃, 298K) for *trans*-6b': δ 164.99 (Py C-2), 148.91 (Py C-6), 140.37 (ipso-Ar), 140.22 (Py C-4), 60.07 (Py-CH(CH₃)N), 20.13, 18.44 (Ar-CH₃), 18.32 (Py-CH(CH₃)N), 3.10 (NCCH₃), 2.00 (Pd-CH₃); cis-6b': δ 159.71 (Py C-2), 148.32 (Py C-6), 140.02 (ipso-Ar), 139.65 (Py C-4), 66.57 (Py-CH(CH₃)N), 18.62, 18.44 (Ar-CH₃), 18.32 (Py-CH(CH₃)N), 3.35 (NCCH₃), -1.08 (Pd-CH₃); 131.88, 131.36, 129.32, 128.96, 126.85, 125.92 (m-Ar and p-Ar), 130.35, 130.19, 130.10, 129.90 (o-Ar), 125.35, 124.76, 123.95, 122.08 (Py C-3 and Py C-5). MS (FAB/MS, m/z): 388.1 (M⁺¹), 331.0 (M⁺¹ - CH₃ - NCCH₃). Anal. Calcd for C₁₈H₂₄N₃PdBF₄: C, 45.45; H, 5.05; N, 8.84. Found: C, 45.89; H, 4.57; N, 9.74.

{[(2,6-¹Pr₂C₆H₃)HNCMeH(*o*-C₆H₅N)]Pd(Me)(NCMe)}(BF₄) (7b') The synthesis was carried out according to the same procedure as for **3a'**, using **7b** (150 mg, 0.34 mmol) and AgBF₄ (66 mg, 0.34 mmol) to give the pale white product **7b'** (137 mg, 76%). ¹H NMR (400 MHz, CDCl₃) for *trans*-**7b'**: δ 8.40 (d, *J*_{H-H} = 5.6 Hz, 1H, Py H-6), 8.08 (dt, *J*_{H-H} = 1.5, 7.8 Hz, 1H, Py H-4), 7.56 (d, *J*_{H-H} = 8.0 Hz, 1H, Py H-3), 7.51 (t, *J*_{H-H} = 6.3 Hz, 1H, Py H-5), 7.15~7.23 (m, 2H, m-Ar; 1H, p-Ar), 5.55 (d, *J*_{H-H} = 10.3 Hz, 1H, NH-Ar), 4.62 (m, 1H, Py-CH(CH₃)N), 4.55, 3.17 (sept, *J*_{H-H} = 6.9, 6.7 Hz, 2H, Ar-CH(CH₃)₂), 1.61 (d, *J*_{H-H} = 6.7 Hz, 3H, Py-CH(CH₃)N), 1.44, 1.30 (d, *J*_{H-H} = 6.6, 6.8 Hz, 6H, Ar-CH(CH₃)₂), 1.81 (s, 1H, NCCH₃), 0.96 (s, 3H, Pd-CH₃); *cis*-**7b'**: δ 8.72 (d, *J*_{H-H} = 4.7 Hz, 1H, Py H-6), 7.98 (dt, *J*_{H-H} = 1.5, 7.8 Hz, 1H, Py H-4), 7.69 (t, *J*_{H-H} = 6.4 Hz, 1H, Py H-5), 7.41 (d, *J*_{H-H} = 8.0 Hz, 1H, Py H-3), 7.15~7.23

(m, 2H, m-Ar; 1H, p-Ar), 5.79 (d, $J_{H-H} = 9.3$ Hz, 1H, N*H*-Ar), 4.62 (m, 1H, Py-C*H*(CH₃)N), 4.30, 2.98 (sept, $J_{H-H} = 6.6$, 6.6 Hz, 2H, Ar-C*H*(CH₃)₂), 1.56 (d, $J_{H-H} = 6.8$ Hz, 3H, Py-CH(C*H₃*)N), 2.50 (s, 1H, NCC*H₃*), 0.25 (s, 3H, Pd-C*H₃*); 1.39, 1.36, 1.35 (d, $J_{H-H} = 6.7$, 6.4, 6.5 Hz, 9H, Ar-CH(C*H₃*)₂), 1.23 (m, 9H, Ar-CH(C*H₃*)₂). ¹³C NMR (100.625 MHz, CDCl₃) for *trans*-7b': δ 164.69 (Py C-2), 148.47 (Py C-6), 140.33 (Py C-4), 62.30 (Py-C(CH₃)N), 29.17, 28.04 (Ar-CH(CH₃)₂), 17.34 (Py-C(CH₃)N), 2.92 (NCCH₃), 2.00 (Pd-CH₃); *cis*-7b': δ 159.09 (Py C-2), 149.41 (Py C-6), 139.71 (Py C-4), 68.08 (Py-C(CH₃)N), 28.74, 28.30 (Ar-CH(CH₃)₂), 17.79 (Py-C(CH₃)N), 3.42 (NCCH₃), 1.18 (Pd-CH₃); 25.43, 24.86, 24.73, 24.50, 24.43, 23.89, 23.36, 22.54 (Ar-CH(CH₃)₂), 141.47, 141.22, 140.91, 140.49 (o-Ar), 136.93, 136.89 (ipso-Ar), 127.66, 126.80, 126.64, 126.16, 125.76, 124.89, 124.00, 123.81, 123.70, 121.93 (m-Ar, p-Ar, Py C-3 and Py C-5). MS (FAB, m/z): 444.2 (M⁺¹), 387.1 (M⁺¹ - CH₃ - NCCH₃). Anal. Calcd for C₂₂H₃₁N₃PdBF₄: C, 49.69; H, 6.02; N, 7.91. Found: C, 48.89; H, 6.09; N, 7.53.

Determination of norbornene content and alternating percentage for copolymers

The norbornene content, X_{NB} was evluated with use of ¹³C NMR integrations as designated in the following table according to Eq. (1) used by Kaminsky.¹

$$X_{\rm NB} = \frac{I(A)}{I(B) + I(C) + I(D) - 1.5 I(A)}$$
(1-1)

This journal is C The Royal Society of Chemistry 2009

А	51 - 45	C2, C3
В	43 - 37	C1, C4
С	37 - 32.3	C7
D	32.3 - 28	C5, C6, C_{α} , C_{β} , C_{γ} , C_{δ}

The alternating percentage in a copolymer may be calculated according to Eq. (1-2).

 $Alternating\% = 2 \times single \ NB \ mol \ \% + NB \ Diads \ mol \ \% + 2/3 \times NB \ Triads \ mol \ \%$ (1-2)

Figure S1 Examples of ethylene/norbornene copolymer and block copolymers

Determination of ethylene concentration

To obtain ethylene concentrations for our system, an experiment was conducted using a digitally monitored ethylene reservoir which provided ethylene of a specific pressure on demand to a stirred stainless reactor.² CH₂Cl₂ (*V* solution=50 mL) was injected into the reactor with a nitrogen back pressure and equilibrated at 25 °C. The solution was marginally degassed of N₂ gas without stirring by passing ethylene (100, 200, 300, 400 and 500 psi) over the headspace. To initiate the dissolution experiment, mechanical stirring was activated, and the initial pressure of the reservoir was noted. The solution was stirred for 20-30 min to ensure complete saturation, and then the final head and reservoir pressures were noted. The data collected were used to obtain the number of moles dissolved (Δn) at each pressure according to the ideal gas law: $\Delta PV = \Delta n RT$, where ΔP is the total change in reservoir pressure for a given head pressure, *V* is the volume of the reservoir system (50 L), *R* is the gas constant (1.206 L•psi/mol•K), and *T* is the reservoir temperature (299 K). The results was shown below.

This journal is © The Royal Society of Chemistry 2009

Ethylene	Reservoir ΔP	Δn	Observed [E]
(psi)	(psi)	(moles)	(M)
100	16.67	0.027	0.56
200	33.33	0.055	1.11
300	50.00	0.083	1.66
400	66.67	0.111	2.22
500	83.33	0.138	2.77

Table S2 Ethylene concentration under different pressure in CH₂Cl₂

Fineman-Ross plot

The copolymer compositions were determinated according to the literature.³

Pd-N-polymer	+	Ν	$k_{\rm NN}$	Pd-N-N-polymer	(2-1)
Pd-N-polymer	+	Е	k _{NE}	Pd-N-E-polymer	(2-2)
Pd-E-polymer	+	N	$k_{\rm EN}$	Pd-E-N-polymer	(2-3)
Pd-E-polymer	+	Е	$k_{\rm EE}$	Pd-E-E-polymer	(2-4)

Where Pd-N-polymer and Pd-E-polymer are the growing chain with norbornene and ethylene as the last inserted monomer, and the reactivity ratios are defined as $r_1 = k_{NN}/k_{NE}$ and $r_2 = k_{EE}/k_{EN}$. By using quasi-steady-state assumption for propagation, the copolymer composition equation can be derived as:

$$\left(\frac{[N]}{[E]}\right)_{\text{polymer}} = \frac{[N]}{[E]} \frac{\left(1 + r_1 \frac{[N]}{[E]}\right)}{\left(r_2 + \frac{[N]}{[E]}\right)}$$
(3)

where $([E]/[N])_{polymer}$ and ([E]/[N]) are the ethylene and norbornene molar ratios in the copolymer and the bulk reaction solution. Futher replacement of $([N]/[E])_{polymer}$ and ([N]/[E]) to *f* and *F*, the following Fineman-Ross equation can be derived as:

$$\frac{(f-1)}{f} F = r_1 \frac{F^2}{f} - r_2 \qquad (4)$$

Table S3 Fineman-Ross data of ethylene/norbornene copolymerization catalyzed by 3b'

NB (g)	NB Conc. (M)	E Conc. (M)	F ([N]/[E])	NB % (¹³ C NMR)	f (([N]/[E]) _{polymer})	F^2/f	F(f-1)/f
0.5	0.11	1.66	0.066265	42.0	0.724138	0.006064	-0.02524
1	0.21	1.66	0.126506	42.5	0.73913	0.021652	-0.04465
3	0.64	1.66	0.385542	49.4	0.976285	0.152254	-0.00937
5	1.06	1.66	0.638554	54.0	1.173913	0.347344	0.094601
10	2.13	1.66	1.283133	52.4	1.10084	1.495611	0.117539
20	4.26	1.66	2.566265	53.3	1.141328	5.770224	0.317774
30	6.38	1.66	3.843373	59.6	1.475248	10.01291	1.238134

This journal is © The Royal Society of Chemistry 2009

Correlation of T_g and norbornene content determined from $^{13}\mathrm{C}$ NMR data

Figure S2 Norbornene content in copolymer as a function of the glass transition temperature T_g

Figure S3 Ethylene/norbornen copolymer catalyzed by 3b' with 1 g of norbornene feeding

This journal is © The Royal Society of Chemistry 2009

Figure S5 Ethylene/norbornen copolymer catalyzed by 3b' with 30 g of norbornene feeding

Kinetic data and spectra of varible temperature NMR

Table 54 Kinetic data for restricted foration									
Compound (CH ₃)		a)2-Ar	Δν	K_c	T _{coal.}	$\Delta \mathbf{G}^{\neq}$			
(<i>trans</i> form)	(pr	om)	(Hz)	(S ⁻¹)	(K)	(KJ/mol)			
6a'	3.0113	2.3936	308.85	685.65	303	58.00			
6b	2.5480	2.4020	73.00	162.06	313	61.42			
6b'	3.0120	2.3363	227.85	750.03	323	58.56			

Table S4 Kinetic data for restricted rotation

Figure S6 ¹H NMR spectra of 6a' in CD₂Cl₂ from 293 K to 333K

This journal is © The Royal Society of Chemistry 2009

Figure S7 ¹H NMR spectra of 6a' in CD₂Cl₂ from 243 K to 298K

This journal is © The Royal Society of Chemistry 2009

Figure S8 ¹H NMR spectra of **6b** in CDCl₃ from 253 K to 328K

Figure S9 ¹H NMR spectra of **6b'** in CD₂Cl₂ from 278 K to 313K

Figure S10 1 H NMR spectra of 6b' in CD₂Cl₂ from 253 K to 298K

Compound	trans-4a	trans-5a	cis-6a	cis-4b	cis-6b
Formula	C11H19ClN2Pd	C13H15CIN2Pd	C15H19ClN2Pd	$C_{12}H_{21}ClN_2Pd$	C ₁₆ H ₂₁ ClN ₂ Pd
Formular wt	321.13	341.12	369.17	335.16	383.20
Crystal size / mm	0.25×0.20×0.15	0.25×0.25×0.20	0.30×0.25×0.20	0.30×0.25×0.20	0.30×0.25×0.20
Crystal system	Monoclinic	Triclinic	Triclinic	Orthorhombic	Triclinic
Space group	$P2_1/c$	$P\overline{1}$	$P\overline{1}$	$P2_{1}2_{1}2_{1}$	$P\overline{1}$
<i>a</i> / Å	9.1813(2)	8.2253(2)	8.4240(3)	9.1900(1)	8.3247(1)
b / Å	7.0402(1)	9.1194(2)	9.6334(3)	10.1268(1)	9.6563(1)
<i>c</i> / Å	20.5243(3)	10.6977(2)	10.8944(4)	15.3491(2)	10.8820(1)
lpha / °	90	93.887(1)	110.517(2)	90	108.680(1)
eta / °	95.1410(9)	110.902(1)	105.171(2)	90	101.983(1)
γ / °	90	113.454(1)	98.641(2)	90	93.616(1)
$V/\text{\AA}^3$	1321.32(4)	666.77(3)	770.00(5)	1428.47(3)	802.66(2)
Ζ	4	2	2	4	2
$\rho_{\text{calcd}} / \text{Mg·m}^{-3}$	1.614	1.699	1.592	1.558	1.586
<i>F(000)</i>	648	340	372	680	388
T/K	295(2)	295(2)	295(2)	295(2)	295(2)
$\mu/\text{ mm}^{-1}$	1.579	1.571	1.367	1.464	1.314
Transmission	0.732-0.792	0.654-0.731	0.520-0.767	0.732-0.804	0.651-0.773
θ range / °	1.99~27.50	2.10~27.45	3.63~27.46	2.41~27.46	2.84~27.50
h, k, l	$\pm 11, \pm 9, \pm 26$	$\pm 10, \pm 11, \pm 13$	±10, ±12, -13~14	±11, ±13, -16~19	$\pm 10, \pm 12, \pm 14$
Reflections collected	10638	5239	5884	9298	6809
Indepent reflections	3021	3008	3469	3239	3657
R _{int}	0.0270	0.0207	0.0463	0.0226	0.0183
Data / restraints	3021/0	3008/0	3469/0	3239/0	3657/0
Parameters	141	159	177	146	186
R_{I} [I>2 σ (I)]	0.0226	0.0278	0.0393	0.0156	0.0209
$wR_2 [I \ge 2 \sigma (I)]$	0.0517	0.0668	0.0970	0.0419	0.0603
R_1 (all data)	0.0293	0.0325	0.0484	0.0185	0.0219
wR_2 (all data)	0.0548	0.0697	0.1034	0.0466	0.0614
Goodness of fit on F^2	1.049	1.038	1.010	1.094	0.941
Largest diff. peak and hole, eÅ-3	0.369 and -0.366	0.392 and -0.442	0.656 and -0.869	0.498 and -0.617	0.404 and -0.457

 Table S5
 X-ray crystal parameters and data collection

Compound	cis-7b	cis-3a'	trans-4a'	trans-5a'	trans-4b'
Formula	C20H29ClN2Pd	$C_{12}H_{20}BF_4N_3Pd$	$C_{13}H_{22}BF_4N_3Pd$	$C_{15}H_{18}BF_4N_3Pd$	$C_{14}H_{24}BF_4N_3Pd$
Formular wt	439.30	399.52	413.55	433.53	427.57
Crystal size / mm	0.20×0.20×0.15	0.25×0.20×0.10	0.30×0.25×0.20	0.25×0.20×0.20	0.20×0.20×0.15
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>C</i> 2/c	$P\overline{1}$	$P2_1/n$	$P2_1/c$	$P2_1/c$
<i>a</i> / Å	24.5827(4)	7.5470(2)	7.6329(1)	9.9543(2)	11.6589(2)
b / Å	9.6041(2)	11.2769(2)	12.1420(3)	9.4463(2)	7.3818(2)
c / Å	17.4202(3)	11.2845(2)	20.1943(5)	18.9653(3)	22.3551(6)
α / °	90	62.790(1)	90	90	90
β / °	93.369(1)	78.055(1)	99.206(1)	102.237(1)	100.554(1)
γ/°	90	78.412(1)	90	90	90
$V / Å^3$	4105.7(1)	829.36(3)	1847.47(7)	1742.81(6)	1891.41(8)
Ζ	8	2	4	4	4
$\rho_{\rm calcd}$ / Mg·m ⁻³	1.421	1.600	1.487	1.652	1.502
F(000)	1808	400	832	864	864
T/K	295(2)	295(2)	295(2)	295(2)	295(2)
$\mu/\text{ mm}^{-1}$	1.038	1.153	1.038	1.105	1.017
Transmission	0.821-0.857	0.722-0.892	0.723-0.812	0.720-0.784	0.795-0.864
θ range / °	1.66~27.48	2.05~27.44	1.96~27.47	2.09~27.47	1.78~27.47
h, k, \overline{l}	±31, ±12, -21~22	±9, -13~14, ±14	$\pm 9, \pm 15, \pm 26$	±12, ±12, -22~24	±15, ±9, -28~29
Reflections collected	12879	6276	10140	10796	13190
Indepent reflections	4667	3711	4044	3966	4270
R _{int}	0.0273	0.0289	0.0249	0.0285	0.0411
Data / restraints	4667/0	3711/0	4404/0	3966/0	4270/0

Parameters	222	191	204	222	209
R_{I} [I>2 σ (I)]	0.0313	0.0605	0.0456	0.0299	0.0553
$wR_2 [I \ge 2 \sigma (I)]$	0.0715	0.1658	0.1305	0.0646	0.1530
R_1 (all data)	0.0506	0.0702	0.0556	0.0478	0.0841
wR_2 (all data)	0.0798	0.1804	0.1441	0.0724	0.1829
Goodness of fit on F^2	1.019	1.123	1.101	1.028	1.054
Largest diff. peak and hole, eÅ-3	0.493 and -0.491	1.115 and -0.677	1.287 and -0.804	0.574 and -0.461	0.995 and -0.562

Table So Selected Jona distances (A) and distances (Table S6	Selected	bond	distances	(Å)	and angles	(°`
--	-----------------	----------	------	-----------	-----	------------	-----

['BuHNCH ₂ (o-0	$C_6H_5N)$]Pd(Me)C	l (trans-4a)						
Pd-N1	2.038 (2)	Pd-N2	2.202 (2)	Pd-C1	2.032 (2)	Pd-Cl1	2.3150 (6)	
N1-C6	1.348 (3)	N2-C7	1.470 (3)	C6-C7	1.503 (3)	N2-C8	1.510 (3)	
N1-Pd-N2	80.52 (7)	C1-Pd-Cl1	88.37 (8)	Pd-N1-C6	114.3 (1)	Pd-N2-C7	101.8 (1)	
N1-C6-C7	115.8 (2)	N2-C7-C6	111.8 (2)	C8-N2-Pd	123.5 (1)	C8-N2-C7	115.6 (2)	
[PhHNCH ₂ (o-C	C ₆ H ₅ N)]Pd(Me)Cl	(trans-5a)						
Pd-N1	2.055 (2)	Pd-N2	2.212 (2)	Pd-C1	2.015 (3)	Pd-Cl1	2.3065 (7)	
N1-C6	1.349 (4)	N2-C7	1.468 (4)	C6-C7	1.510 (4)	N2-C8	1.438 (4)	
N1-Pd-N2	80.56 (9)	C1-Pd-Cl1	88.57 (9)	Pd-N1-C6	114.1 (2)	Pd-N2-C7	103.0 (2)	
N1-C6-C7	116.8 (2)	N2-C7-C6	112.2 (2)	C8-N2-Pd	111.1 (2)	C8-N2-C7	117.6 (2)	
$[(2,6-Me_2C_6H_3)]$	HNCH ₂ (o-C ₆ H ₅ N	I)]Pd(Me)Cl (cis-	6a)					
Pd-N1	2.138 (3)	Pd-N2	2.109 (3)	Pd-C1	2.021 (4)	Pd-Cl1	2.3152 (9)	
N1-C6	1.340 (5)	N2-C7	1.490 (5)	C6-C7	1.504 (5)	N2-C8	1.455 (5)	
N1-Pd-N2	81.0 (1)	C1-Pd-Cl1	88.7 (1)	Pd-N1-C6	114.3 (2)	Pd-N2-C7	111.8 (2)	
N1-C6-C7	118.2 (3)	N2-C7-C6	114.2 (3)	C8-N2-Pd	117.5 (3)	C8-N2-C7	113.7 (3)	
[^t BuHNCMeH(o-C ₆ H ₅ N)]Pd(Me)Cl (<i>cis</i> -4b)						
Pd-N1	2.143 (2)	Pd-N2	2.105 (2)	Pd-C1	2.021 (2)	Pd-Cl1	2.3172 (5)	
N1-C6	1.335 (3)	N2-C7	1.492 (2)	C6-C7	1.511 (3)	N2-C9	1.527 (3)	
N1-Pd-N2	79.75 (7)	C1-Pd-Cl1	90.21 (7)	Pd-N1-C6	111.7 (1)	Pd-N2-C7	103.8 (1)	
N1-C6-C7	115.7 (2)	N2-C7-C6	110.2 (2)	C9-N2-Pd	116.4 (1)	C9-N2-C7	116.0 (2)	
$[(2,6-Me_2C_6H_3)]$	HNCMeH(o-C ₆ H	I ₅ N)]Pd(Me)Cl (c	is -6b)					
Pd-N1	2.132 (2)	Pd-N2	2.101 (2)	Pd-C1	2.034 (2)	Pd-Cl1	2.3140 (5)	
N1-C6	1.341 (3)	N2-C7	1.503 (3)	C6-C7	1.512 (3)	N2-C9	1.457 (2)	
N1-Pd-N2	80.62 (6)	C1-Pd-Cl1	89.04 (7)	Pd-N1-C6	114.6 (1)	Pd-N2-C7	112.3 (1)	
N1-C6-C7	117.7 (2)	N2-C7-C6	111.9 (2)	C9-N2-Pd	117.6 (1)	C9-N2-C7	111.7 (2)	
$[(2,6-^{i}Pr_{2}C_{6}H_{3})]$	HNCMeH(o-C ₆ H	5N)]Pd(Me)Cl (ci	(s-7b)					
Pd-N1	2.115 (2)	Pd-N2	2.098 (2)	Pd-C1	2.075 (2)	Pd-Cl1	2.3124 (7)	
N1-C6	1.346 (3)	N2-C7	1.511 (3)	C6-C7	1.519 (3)	N2-C9	1.462 (3)	
N1-Pd-N2	80.77 (8)	C1-Pd-Cl1	89.23 (7)	Pd-N1-C6	115.5 (2)	Pd-N2-C7	113.0 (2)	
N1-C6-C7	117.8 (2)	N2-C7-C6	111.8 (2)	C9-N2-Pd	116.7 (2)	C9-N2-C7	113.0 (2)	
{[ⁱ PrHNCH ₂ (<i>o</i> -	$C_6H_5N)$]Pd(Me)(1	$NCMe$) (BF_4) (ci	(s-3a')					
Pd-N1	2.125 (4)	Pd-N2	2.042 (4)	Pd-C1	2.031 (6)	Pd-N3	2.008 (5)	
N1-C6	1.326 (7)	N2-C7	1.470 (8)	C6-C7	1.517 (7)	N2-C8	1.548 (8)	
N1-Pd-N2	81.7 (2)	C1-Pd-N3	89.9 (3)	Pd-N1-C6	112.7 (3)	Pd-N2-C7	109.0 (3)	
N1-C6-C7	116.1 (4)	N2-C7-C6	112.8 (4)	C8-N2-Pd	109.7 (4)	C8-N2-C7	118.0 (5)	
{[$^{t}BuHNCH_{2}(o-C_{6}H_{5}N)$]Pd(Me)(NCMe)}(BF_{4}) (trans-4a')								
Pd-N1	2.034 (3)	Pd-N2	2.201 (3)	Pd-C1	2.022 (4)	Pd-N3	1.994 (4)	
N1-C6	1.368 (5)	N2-C7	1.500 (5)	C6-C7	1.506 (6)	N2-C8	1.542 (6)	
N1-Pd-N2	81.1 (1)	C1-Pd-N3	87.9 (2)	Pd-N1-C6	114.6 (2)	Pd-N2-C7	103.8 (2)	
N1-C6-C7	117.1 (3)	N2-C7-C6	111.5 (3)	C8-N2-Pd	116.2 (3)	C8-N2-C7	117.5 (3)	
$\{[PhHNCH_2(o-C_6H_5N)]Pd(Me)(NCMe)\}(BF_4) (trans-5a')$								
Pd-N1	2.024 (2)	Pd-N2	2.185 (2)	Pd-C1	2.007 (3)	Pd-N3	1.993 (2)	
N1-C6	1.355 (3)	N2-C7	1.470 (3)	C6-C7	1.495 (4)	N2-C8	1.434 (3)	
N1-Pd-N2	80.80 (9)	C1-Pd-N3	88.3 (1)	Pd-N1-C6	114.6 (2)	Pd-N2-C7	104.2 (2)	
N1-C6-C7	116.9 (2)	N2-C7-C6	112.2 (2)	C8-N2-Pd	110.9 (2)	C8-N2-C7	117.2 (2)	
{[^t BuHNCMeH	$[(o-C_6H_5N)]Pd(M$	$e)(NCMe)\}(BF_4)$	(trans-4b')					
Pd-N1	2.032 (4)	Pd-N2	2.184 (4)	Pd-C1	2.020 (6)	Pd-N3	1.996 (5)	
N1-C6	1.332 (6)	N2-C7	1.487 (6)	C6-C7	1.524 (7)	N2-C9	1.513 (7)	
N1-Pd-N2	80.5 (2)	C1-Pd-N3	88.3 (2)	Pd-N1-C6	113.7 (3)	Pd-N2-C7	102.6 (3)	
N1-C6-C7	117.6 (4)	N2-C7-C6	109.5 (4)	C9-N2-Pd	118.8 (3)	C9-N2-C7	115.9 (4)	

Figure S11 ORTEP drawing of *trans*-4a, all hydrogen atoms are omitted for clarity.

Figure S12 ORTEP drawing of *trans*-5a, all hydrogen atoms are omitted for larity.

This journal is © The Royal Society of Chemistry 2009

Figure S13 ORTEP drawing of *cis*-6a, all hydrogen atoms are omitted for clarity.

Figure S14 ORTEP drawing of *cis*-4b, all hydrogen atoms are omitted for clarity.

Figure S15 ORTEP drawing of *cis*-6b, all hydrogen atoms are omitted for clarity.

This journal is © The Royal Society of Chemistry 2009

Figure S16 ORTEP drawing of *cis*-7b, all hydrogen atoms are omitted for clarity.

Figure S17 ORTEP drawing of *cis*-3a', all hydrogen atoms are omitted for clarity.

This journal is © The Royal Society of Chemistry 2009

Figure S18 ORTEP drawing of *trans*-4a', all hydrogen atoms are omitted for clarity.

Figure S19 ORTEP drawing of *trans*-5a', all hydrogen atoms are omitted for clarity.

This journal is © The Royal Society of Chemistry 2009

Figure S20 ORTEP drawing of *trans*-4b', all hydrogen atoms are omitted for clarity.

Figure S22 Comparative ¹H NMR spectrum of norbornene insertion into **3b**' in the regions of (a) $8.7 \sim 7$ ppm and (b) $4.6 \sim 0$ ppm.

This journal is © The Royal Society of Chemistry 2009

References:

- 1. J. Kiesewetter and W. Kaminsky, Chem. Eur. J., 2003, 9, 1750-1758.
- 2. A. L. McKnight and R. M. Waymouth, Macromolecules, 1999, 32, 2816-2825.
- (a) M. Fineman and S. D. Ross, J. Polym. Sci., 1950, 5, 259-265; (b) M. P. Stevens, *Polymer Chemistry: An Introduction*, 3rd Edition, Oxford University Press, New York, 1999, p194.