Supplementary Data for

A mixed-valence diruthenium complex, triply bridged by mixed-moieties of chloro and methoxo ligands.

Kazuhiro Matsuya,^a Sohei Fukui,^a Yoshimasa Hoshino,^b and Hirotaka Nagao^{*,a}

^aDepartment of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan

^bDepartment of Science and Information Communication Technology, Graduate School of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

I. Synthesis of [{Ru(ebpma)}₂(µ-Cl)(µ-OCH₃)₂](PF₆)₂

fac-[Ru^{III}Cl₃(ebpma)] (50 mg, 0.12 mmol) and zinc powder (25 mg) were suspended in methanol (15 cm³), and the mixture was stirred at room temperature for 15 hrs to give green solution. The zinc was then filtered out, ammonium hexafluorophosphate (50 mg, 0.31 mmol) was added, and the solvent was removed by a rotary evaporator. After a small amount of H₂O was added to the remaining green solid, the product was then filtered. The green solid was recrystallized from a water-acetone mixture (20 cm³, 1:4 v/v). The green complex was collected by filtration, washed with water, ethanol, and diethyl ether, and dried *in vacuo*.

Yield: 37 mg, 66%. Elemental Analysis: calcd for C₃₀H₄₀ClF₁₂N₆O₂P₂Ru₂: C, 34.51; H, 3.86; N, 8.05%. Found: C, 34.35; H, 3.57; N; 7.88%. FAB MS (*m/z*): 900 (M-PF₆), 755 (M-2PF₆).

II. Characterization of the diruthenium complex

II-1 X-ray structural analysis

Single crystals were obtained by diffusion of diethyl ether into CH_3COCH_3 solution. The intensity data were collected on a Rigaku Mercury CCD diffractometer, using graphic monochromatized $MoK\alpha$ radiation (0.71069 Å). All the calculations were carried out using the Crystal Structure software package. Structures were solved by a direct method, expanded using Fourier techniques and refined using full-matrix least-squares techniques.

Fig. S1 Structure of $[{Ru(ebpma)}_2(\mu-Cl)(\mu-OCH_3)_2]^{2+}$ with atom labeling.

II-2 Electrochemical properties

Cyclic voltammetry. Cyclic voltammetric measurements were made on CH₃CN solution containing 0.1 mol dm⁻³ tetraethylammonium perchlorate (TEAP, Nakarai Tesque. Ltd.) as supporting electrolyte with a platinum disk working electrode ($\phi = 1.6$ mm), and an Ag | 0.01 mol dm⁻³ AgNO₃ reference electrode by using a BAS 100B/W Electrochemical Analyzer. At the end of each measurement, ferrocene (0.07 V in CH₃CN(TEAP) *vs*. Ag | 0.01 mol dm⁻³ AgNO₃ (CH₃CN)) was added as an internal standard to correct redox potentials.

Cyclic voltammogram (CV) of the diruthenium complex in CH_3CN showed two reversible waves at 0.22 and -0.65 V (Fig. S2). The redox potential was independent with scan rate.

E vs. Ag | 0.01 mol dm⁻³ AgNO₃ / V

Fig. S2 CV of $[\{\text{Ru}(\text{ebpma})\}_2(\mu\text{-Cl})(\mu\text{-OCH}_3)_2](\text{PF}_6)_2$ in CH₃CN with scan rate 25, 50, 100, 200, 400 mV/s at 25°C.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Controlled-potential electrolysis (CPE). CPE was made in a three-compartment cell with a platinum gauze working electrode in the first-compartment, an auxiliary electrode in the second-compartment, and an reference electrode in the third-compartment using a Huso polarograph Model 312 and 343B digital coulometer. After the electrolyses, changes of the species were monitored by CV and hydrodynamic voltammograms (HDVs). The HDVs were made with a rotating platinum disk working electrode ($\phi = 3.0$ mm) using a BAS RDE-2 rotating electrode. At the end of each measurement, ferrocene was added as an internal standard to correct redox potentials.

The electrolysis was performed under an applied voltage of -0.70 and 0.50 V. The number of electrons was determined by the relation of the change in wave height of HDV (a diffusion current) with the quantity of electricity consumed during electrolysis (Fig. S3 for the oxidation wave at 0.22 V and Fig. S4 for the reduction wave at -0.65 V). These results revealed these waves corresponded to one-electron oxidation and reduction processes.

 $\begin{bmatrix} Ru(II)-Ru(III) \end{bmatrix}^{5+} \qquad \longrightarrow \qquad \begin{bmatrix} Ru(III)-Ru(III) \end{bmatrix}^{6+} + e^{-} \\ \begin{bmatrix} Ru(II)-Ru(III) \end{bmatrix}^{5+} + e^{-} \qquad \longrightarrow \qquad \begin{bmatrix} Ru(II)-Ru(II) \end{bmatrix}^{4+} \\ \end{bmatrix}$

The CVs of the complex in CH₃CN solution that had been left for hours under Ar after electrolysis were measured. The reduced (Ru(II)-Ru(II)) and oxidized isovalence species (Ru(III)-Ru(III)) were stable for a few hours.

Fig. 3. Change of HDV and Plot of the Limiting Current vs. Q/NF of the oxidation wave.

Fig. S4 Change of HDV and Plot of the Limiting Current vs. Q/NF of the reduction wave.

Comproportionation constant (K_C). The comproportionation constant K_C was estimated from the $E_{1/2}$ separation between Ru(III)-Ru(III)/Ru(III)-Ru(II) and Ru(III)-Ru(II)/Ru(II)-Ru(II) redox couples.

$$RT \ln K_c = nF(\Delta E)$$

 $\Delta E = 0.22 - (-0.65) = 0.87 \text{ V}$
 $K_c = 5.1 \times 10^{14}$

This value indicated that the complex would be categorized into Class III according to Robin-Day classification.

II-3 Spectroscopic properties

UV-vis / **Near-IR spectroscopy.** UV-vis and Near-IR spectra were measured on Shimadzu MultiSpec-1500 spectrophotometer and UV-3100 using a quartz cell of 1 cm path length.

Electronic Supplementary Information for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2009

Fig. S5 UV-vis / Near-IR spectrum of $[{Ru(ebpma)}_2(\mu-Cl)(\mu-OCH_3)_2](PF_6)_2$ (1.00 x 10⁻⁴ mol dm⁻³) in CH₃CN.

solvent	$\lambda_{ m max}$ / nm	ε / 10 ⁴ M ⁻¹ cm ⁻¹
CH ₂ Cl ₂	249	1.265
	369	0.763
	733	0.599
CH ₃ COCH ₃	730	0.825
CH₃CN	248	1.421
	370	0.899
	729	0.724
DMF	370	1.000
	735	0.624
DMSO	369	1.331
	374	1.369
	733	1.043
CH ₃ OH	248	1.699
	370	1.190
	731	1.022
CH ₃ NO ₂	733	0.822

Table 1 UV-vis spectral data of $[{Ru(ebpma)}_2(\mu-Cl)(\mu-OCH_3)_2](PF_6)_2$.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2009

Spectroelectrochemistry. Spectroelectrochemical experiments were performed using an OTTLE (Optically Transparent Thin-Layer Electrode) cell. [$\{Ru(ebpma)\}_2(\mu-Cl)(\mu-OCH_3)_2$](PF₆)₂ was dissolved in CH₃CN to prepare a solution whose concentration was 5 mmol dm⁻³.

λ/nm

Fig. S6 UV-vis spectrum in CH₃CN; (a) the reductive CPE at -0.70 V, (b) the oxidative CPE at 0.50 V.