Electronic Supplementary Information

Syntheses, Photochromic and Electrochromic Properties of Oxo-centred Triruthenium Compounds With Dithienylethene Bis(phosphine) Ligand

Feng-Rong Dai, Bin Li, Lin-Xi Shi, Li-Yi Zhang and Zhong-Ning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

E-mail: czn@fjirsm.ac.cn

				2	
Table S1 . ¹ H NMR	Chemical Shifts ((δ) for Compounds	$[2(0)]^+$	$[3(0)]^{2+}, 2(0),$	and 3(0) .

	[2(0)] ⁺	[3(0)] ²⁺	2(0)	3(0)
δ (OAc)	0.898 (3H)	0.928 (3H)	1.296 (3H)	1.725 (24H)
	1.295 (3H)	0.945 (3H)	1.873 (9H)	1.847 (12H)
	1.683 (3H)	0.986 (6H)	2.037 (3H)	
	4.384 (3H)	1.003 (6H)	2.133 (3H)	
	6.324 (3H)	1.296 (3H)		
	9.658 (3H)	4.063 (6H)		
		6.249 (3H)		
		9.594 (6H)		
δ (DTE)	2.278 (6H, CH ₃)	2.351 (6H, -CH ₃)	2.075 (6H, -CH ₃)	2.049 (6H, -CH ₃)
	2.233 (2H, CH ₂)	2.370 (4H, -CH ₂)	0.886 (2H, -CH ₂)	1.298 (2H, -CH ₂)
	2.847 (2H, CH ₂)	3.099 (2H, -CH ₂)	2.739 (4H, -CH ₂)	2.714 (4H, -CH ₂)
	3.005 (2H, CH ₂)	4.887 (1H, CH)	7.011 (1H, CH)	7.499 (2H, CH)
	6.324 (1H, CH)	6.249 (1H, CH)	7.323 (1H, CH)	
	6.838 (1H, CH)			
δ (Ph)	5.984 (4H)	4.100-4.600 (6H)	7.341-7.528 (20H)	7.350-7.450 (12H)
	7.308-7.598 (16H)	5.969 (4H)		7.734 (8H)
		7.554-7.769 (10H)		
δ (py)	7.950 (2H, m)	2.032 (4H, m)	7.967 (4H, m)	7.968 (8H, m)
	8.256 (2H, m)	3.859 (2H, p)	8.239 (2H, p)	8.224 (4H, p)
	9.658 (6H, o, p)	4.100-4.600 (4H, o)	9.166 (4H, o)	9.343 (8H, o)
		7.956 (2H, m)		
		8.239 (2H, m)		
		9.594 (6H, o, p)		

Fig. S1. ¹H NMR (400 MHz) spectrum of compound $[2(0)]^+$ in CD₃CN.

Fig. S2. ¹H NMR (400 MHz) spectrum of compound $[3(o)]^{2+}$ in CD₃CN.

Fig. S3. ¹H NMR (400 MHz) spectrum of compound **2(0)** in CD₃CN.

Fig. S4. ¹H NMR (400 MHz) spectrum of compound **3(0)** in CD₃CN.

Fig. S5 Plots of cyclic and differential pulse voltammograms for compounds $[2(c)]^+$ and $[3(c)]^{2+}$ recorded after irradiation of $[2(o)]^+$ and $[3(o)]^{2+}$ at 254 nm in 0.1 M acetonitrile solution of $(Bu_4N)(PF_6)$. The scan rates are 100 mV s-1 for CV and 20 mV s-1 for DPV.

Fig. S6. UV-vis absorption spectra of $[2]^+$ (2.0 × 10⁻⁵ mol/L) in dichloromethane upon irradiation with UV light (254 nm) at 0, 1, 3, 6, 10, 15 min.

Fig. S7. UV-vis absorption spectra of **2** $(2.0 \times 10^{-5} \text{ mol/L})$ in dichloromethane upon irradiation with UV light (254 nm) at 0, 1, 3, 5, 9, 15, 23, 30 min.

Fig. S8. UV-vis absorption spectra of $[2(0)]^+$, 2(0), $[2(c)]^+$, and 2(c).

Fig. S9. UV-vis absorption spectra of $[3]^{2+}$ (2.0 × 10⁻⁵ mol/L) in dichloromethane upon irradiation with UV light (254 nm) at 0, 0.5, 1, 4, 6 min.

Fig. S10. UV-vis absorption spectra of [3(0)]²⁺, 3(0), [3(c)]²⁺, and 3(c).