Supporting information

TableS1. ${[Cu_4(bpy)_4(O)]}$	Selected H) ₄ (H ₂ O) ₂]}(NC	bond lengths $O_3)_2(C_7H_5O_2)_2 \cdot 6H_2$	[Å] and O 1 ^{<i>a</i>}	angles [°]	for
Cu1–O1 Cu1–O2 Cu1–N1 Cu1–N2	1.921(3) 1.973(2) 2.008(3) 2.014(3)	Cu1–O3 Cu2–O1 Cu2–O2 Cu2–N3	2.257(3) 1.920(3) 1.962(3) 1.990(3)	Cu2–N4 Cu2–O2 ^{#1}	2.015(3) 2.301(2)
O1-Cu1-O2 O1-Cu1-O3 O1-Cu1-N1 O1-Cu1-N2 O2-Cu1-O3 O2-Cu1-N1 O2-Cu1-N2	82.5(1) 90.3(1) 169.2(1) 94.9(1) 94.7(1) 97.7(1) 157.5(1)	N1-Cu1-O3 N1-Cu1-N2 N2-Cu1-O3 O1-Cu2-O2 O1-Cu2-O2 ^{#1} O1-Cu2-N3 O1-Cu2-N4	$100.4(1) \\ 80.8(1) \\ 107.7(1) \\ 82.8(1) \\ 101.5(1) \\ 96.2(1) \\ 163.6(1)$	O2-Cu2-O2 ^{#1} O2-Cu2-N3 O2-Cu2-N4 N3-Cu2-O2 ^{#1} N3-Cu2-N4 N4-Cu2-O2 ^{#1}	82.6(1) 176.6(1) 99.3(1) 100.8(1) 80.8(1) 94.9(1)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 = -x+2, -y+1, -z+1

${[Cu_4(bpy)_4(OH)_4(H_2O)_2]}(NO_3)_2(C_5H_6O_4)\cdot 8H_2O 2$					
Cu1–O1	1.920(2)	Cu2–O3	2.296(2)	Cu3–N6	1.984(3)
Cu1–O2	1.962(2)	Cu2–N3	2.011(3)	Cu4–O4	1.913(2)
Cu1–O5	2.251(2)	Cu2–N4	2.002(3)	Cu4–O3	1.973(2)
Cu1–N1	2.016(3)	Cu3–O2	2.327(2)	Cu4–N7	1.998(3)
Cu1–N2	2.003(3)	Cu3–O3	1.949(2)	Cu4–N8	2.012(3)
Cu2–O1	1.911(2)	Cu3–O4	1.919(2)	Cu4–O6	2.260(2)
Cu2–O2	1.967(2)	Cu3–N5	2.016(3)		
O1–Cu1–O2	81.38(9)	O2–Cu2–O3	84.85(8)	N6-Cu3-O2	97.69(9)
O1–Cu1–O5	94.23(9)	O2-Cu2-N3	100.5(1)	N6-Cu3-N5	81.1(1)
O1–Cu1–N1	167.81(9)	O2-Cu2-N4	174.7(1)	O3–Cu4–O6	94.23(9)
O1–Cu1–N2	94.8(1)	N3-Cu2-O3	97.76(9)	O3–Cu4–N7	98.5(1)
O2–Cu1–O5	104.3(1)	N4-Cu2-O3	100.03(9)	O3–Cu4–N8	155.61(9)
O2-Cu1-N1	99.0(1)	N4-Cu2-N3	81.0(1)	O4–Cu4–O3	80.59(9)
O2-Cu1-N2	159.3(1)	O3–Cu3–O2	84.42(8)	O4–Cu4–O6	97.7(1)
N1-Cu1-O5	97.5(1)	O3–Cu3–N5	101.6(1)	O4–Cu4–N7	168.3(1)
N2-Cu1-O5	96.2(1)	O3–Cu3–N6	176.4(1)	O4–Cu4–N8	95.2(1)
N2-Cu1-N1	80.6(1)	O4–Cu3–O2	101.49(9)	N7-Cu4-O6	94.0(1)
O1–Cu2–O2	81.47(9)	O4–Cu3–O3	81.03(9)	N7–Cu4–N8	80.8(1)
O1–Cu2–O3	96.67(8)	O4–Cu3–N5	161.1(1)	N8-Cu4-O6	110.2(1)
O1-Cu2-N3	165.56(9)	O4–Cu3–N6	95.6(1)		
O1-Cu2-N4	95.9(1)	N5-Cu3-O2	97.36(9)		

TableS3.(IC): (bry) (OU)	Selected	bond lengths $1 \times 1 $	[Å] and	angles [°]	for
{[Cu4(0py)4(OH)4(H ₂ O) ₂]}(C ₅	H ₆ O ₄) ₂ ·10H ₂ O 3			
Cu1–O1	1.91(3)	$Cu2-O2^{#1}$	2.31(3)	Cu3–N6	2.01(4)
Cu1–O2	1.99(3)	Cu2–N3	1.98(4)	Cu4–O4	1.92(3)
Cu1–O3	2.25(4)	Cu2–N4	2.02(4)	Cu4–O5	1.96(3)
Cu1–N1	1.99(4)	Cu3–O4	1.91(3)	Cu4-O5 ^{#2}	2.30(3)
Cu1–N2	2.01(4)	Cu3–O5	1.97(3)	Cu4–N7	2.03(4)
Cu2–O1	1.92(3)	Cu3-O6	2.24(4)	Cu4–N8	1.99(4)
Cu2–O2	1.95(3)	Cu3–N5	2.02(4)		
O1–Cu1–O2	81.2(1)	O2-Cu2-O2 ^{#1}	84.6(1)	N6-Cu3-O6	98.5(2)
O1 Cu1 O3	91.3(2)	O2-Cu2-N3	175.7(2)	N6-Cu3-N5	80.7(2)
O1–Cu1–N1	168.6(2)	O2-Cu2-N4	100.9(1)	O4–Cu4–O5	81.8(1)
O1 Cu1 N2	94.7(2)	N3-Cu2-O2 ^{#1}	98.9(1)	O4-Cu4-O5 ^{#2}	99.8(1)
O2–Cu1–O3	98.8(1)	N3-Cu2-N4	80.9(2)	O4-Cu4-N7	163.2(1)
O2-Cu1-N1	98.2(2)	N4-Cu2-O2 ^{#1}	100.7(1)	O4–Cu4–N8	95.8(1)
O2 Cu1 N2	156.5(2)	O4-Cu3-O5	81.7(1)	O5-Cu4-O5 ^{#2}	85.3(1)
N1-Cu1-O3	100.0(2)	O4-Cu3-O6	92.0(1)	O5-Cu4-N7	100.4(1)
N1 Cu1 N2	81.2(2)	O4-Cu3-N5	95.3(1)	O5-Cu4-N8	176.3(1)
N2-Cu1-O3	104.5(2)	O4-Cu3-N6	169.5(2)	N7-Cu4-O5 ^{#2}	97.0(1)
O1–Cu2–O2	82.1(3)	O5-Cu3-O6	96.6(1)	N8-Cu4-O5#2	97.9(1)
O1-Cu2-O2 ^{#1}	96.4(1)	O5-Cu3-N5	157.2(1)	N8-Cu4-N7	81.1(2)
O1-Cu2-N3	95.1(2)	O5-Cu3-N6	98.1(1)		
O1-Cu2-N4	162.8(2)	N5-Cu3-O6	106.1(2)		

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 = -x, -y, -z+1, #2

= -x + 1, y+1, -z+1

Cu1–O1	1.911(4)	Cu3–O2	2.254(4)	Cu5–O5	1.923(5)
Cu1–O2	1.992(4)	Cu3–O3	1.947(4)	Cu5–O6	1.978(5)
Cu1–O4	2.207(5)	Cu3–O3 ^{#1}	1.966(4)	Cu5–O7 ^{#2}	2.380(5)
Cu1–N1	2.015(5)	Cu3–N5	1.997(5)	Cu5–N9	2.007(6)
Cu1–N2	1.997(5)	Cu3–N6	2.018(5)	Cu5-N10	2.016(6)
Cu2–O1	1.910(4)	Cu4–O5	1.934(5)	Cu6–O6	2.269(5)
Cu2–O2	1.974(4)	Cu4–O6	2.004(5)	Cu6–O7	1.962(4)
Cu2–O3 ^{#1}	2.327(4)	Cu4–O8	2.203(5)	Cu6–O7 ^{#2}	1.962(4)
Cu2–N3	2.007(5)	Cu4–N7	2.019(6)	Cu6–N11	2.026(5)
Cu2–N4	1.995(5)	Cu4–N8	2.013(6)	Cu6–N12	1.999(5)
O1–Cu1–O2	79.6(2)	O2–Cu3–O3	100.2(2)	O5–Cu5–O6	83.1(2)
O1–Cu1–O4	92.8(2)	O2–Cu3–O3 ^{#1}	86.8(2)	O5–Cu5–O7 ^{#2}	95.4(2)
O1–Cu1–N1	97.4(2)	O2-Cu3-N5	98.8(2)	O5–Cu5–N9	166.1(2)
O1–Cu1–N2	171.6(2)	O2–Cu3–N6	95.9(2)	O5-Cu5-N10	95.3(2)
O2-Cu1-O4	95.5(2)	O3–Cu3–O3 ^{#1}	81.5(2)	O6–Cu5–O7 ^{#2}	82.7(2)
O2-Cu1-N1	157.4(2)	O3-Cu3-N5	161.0(2)	O6-Cu5-N9	99.2(2)
O2-Cu1-N2	98.8(2)	O3–Cu3–N6	98.5(2)	O6-Cu5-N10	173.5(2)
O4-Cu1-N1	107.1(2)	O3 ^{#1} –Cu3–N5	98.5(2)	O7 ^{#2} -Cu5-N9	98.5(2)
O4-Cu1-N2	95.6(2)	O3 ^{#1} –Cu3–N6	177.3(2)	O7 ^{#2} -Cu5-N10	103.7(2)
N1-Cu1-N2	80.9(2)	N5-Cu3-N6	80.6(2)	N9-Cu5-N10	80.9(2)
O1–Cu2–O2	80.1(2)	O5–Cu4–O6	82.2(2)	O6–Cu6–O7	109.7(2)
O1–Cu2–O3 ^{#1}	98.4(2)	O5–Cu4–O8	91.9(2)	O6–Cu6–O7 ^{#2}	86.1(2)
O1-Cu2-N3	162.3(2)	O5-Cu4-N7	96.2(2)	O6-Cu6-N11	95.1(2)
01-Cu2-N4	98.9(2)	O5–Cu4–N8	173.0(2)	O6-Cu6-N12	96.9(2)
O2–Cu2–O3 ^{#1}	84.7(2)	O6Cu4O8	88.5(2)	O7–Cu6–O7 ^{#2}	79.7(2)
O2-Cu2-N3	99.3(2)	O6-Cu4-N7	162.5(2)	07–Cu6–N11	155.1(2)
O2-Cu2-N4	177.8(2)	O6Cu4N8	99.1(2)	O7-Cu6-N12	97.7(2)
O3 ^{#1} –Cu2–N3	99.1(2)	O8Cu4N7	109.0(2)	O7 ^{#2} -Cu6-N11	100.7(2)
O3 ^{#1} –Cu2–N4	97.5(2)	O8–Cu4–N8	95.0(2)	O7 ^{#2} -Cu6-N12	176.6(2)
N3-Cu2-N4	81.1(2)	N7-Cu4-N8	80.6(3)	N11-Cu6-N12	80.7(2)

Table S4a. Selected bond lengths [Å] and angles [°] for $[Cu_6(bpy)_6(OH)_6(H_2O)_2](C_8H_7O_2)_6 \cdot 12H_2O 4^a$

^{*a*}Symmetry transformations used to generate equivalent atoms: #1 = -x+1, -y+1, -z;#2 = -x, -y+1, -z+1

	d(D-н)	d(H···A)	ZDHA	d(D····A)
$OI-HIA\cdots O20$	0.87	1.90	176	2.768
02–H2A…013	0.90	2.04	175	2.934
03–H3A…014	0.87	1.87	175	2.731
O4–H4A…O22	0.85	1.83	177	2.679
O4–H4B…O12	0.79	1.96	169	2.733
O5–H5···O17 ^{#3}	0.86	1.94	150	2.717
O6–H6···O9	0.86	2.00	172	2.852
O7–H7…O18 ^{#4}	0.91	1.95	171	2.854
O8–H8B…O10	0.84	1.91	153	2.676
O8–HA…O16 ^{#3}	0.85	1.85	160	2.669
O21–H21B…O9 ^{#4}	0.88	1.91	172	2.784
O21–H21A…O18	0.88	1.96	154	2.784
O22–H22A…O19	0.85	1.82	163	2.642
O22–H22B····O23 ^{#4}	0.84	1.89	161	2.707
O23–H23A…O11	0.88	1.86	172	2.734
O23–H23B…O11 ^{#4}	0.84	1.98	178	2.828
O24–H24A…O28	0.86	2.06	156	2.871
O24–H24B…O26 ^{#5}	0.86	2.03	167	2.864
O25–H25A…O14 ^{#1}	0.88	2.10	174	2.979
O25–H25B…O20	0.73	2.19	175	2.922
O26–H26A…O27	0.76	1.98	158	2.697
O26–H26B…O17	0.86	1.89	170	2.744
O27–H27A…O16	0.87	1.87	161	2.709
O27–H27B…O5 ^{#6}	0.86	1.89	164	2.730
O28–H28A…O13	0.89	1.94	166	2.812
O28-H28B…O12	0.82	1.95	175	2.764
O29–H29A…O15 ^{#3}	0.86	1.88	178	2.745
O29–H29B…O10	0.82	2.04	156	2.807
O30–H30B…O21	0.88	2.05	149	2.837
O30–H30A…O32B b ^{#4}	0.88	1.55	144	2.312
O30–H30A…O32A a ^{#4}	0.88	2.03	155	2.844
O31–H31B…O15 ^{#7}	0.77	1.95	177	2.715
O31–H31A…O29 ^{#4}	0.82	2.06	162	2.848
O32–H32B a…O26 ^{#5}	0.85	1.99	163	2.818
O32–H32A_a…O28	0.89	2.25	162	3.100

Table S4b. Hydrogen bonding contacts for $[Cu_6(bpy)_6(OH)_6(H_2O)_2](C_8H_7O_2)_6 \cdot 12H_2O_4^a$

.

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 = -x+1, -y+1, -z;#2 = -x, -y+1, -z+1; #3 = x-1, y, z; #4 = -x+1, -y+1, -z+1; #5 = x, y+1, z; #6 = x+1,y+1, z; #7 = x, y, z+1

	1	2	3	4
IR data ($v \text{ cm}^{-1}$):	3381 vs, 3109 vw, 3022	3383 vs, 3109 vw, 3022 vw,	3381 vs, 3107 vw, 3030 vw,	3363 m, 3058 w, 1574 s, 1494
	vw, 1647 w, 1601 m, 1553	1651 m, 1601 m, 1556 s,	1647 w, 1601 m, 1558 s,	m, 1446 m, 1367 s, 1030 m,
	s, 1447 m, 1385 vs, 1319	1447 s, 1385 vs, 1161 w,	1448 m, 1396 vs, 1319 w,	769 s, 731 s
	w, 1161 w, 1030 w, 770 m,	1028 w, 770 m, 731 m, 489	1161 w, 1030 w, 770 m, 729	
	729 m, 486 w.	W	m, 490 w	
elemental analyses	Anal. Calcd. for	Anal. Calcd. for	Anal. Calcd. for	Anal. Calcd. for
	$C_{54}H_{62}Cu_4N_{10}O_{22}$ (%): C,	$C_{45}H_{57}Cu_4N_{10}O_{24}$ (%): C,	C ₅₀ H ₈₄ Cu ₄ N ₈ O ₃₀ (%): C,	$C_{108}H_{124}Cu_6N_{12}O_{32}$ (%): C,
	44.44; H, 4.28; N, 9.60.	39.08; H, 4.15; N, 10.12.	39.17; H, 5.52; N, 7.31.	52.23; H, 5.03; N, 6.75.
	Found (%): C, 44.26; H,	Found (%): C, 38.96; H,	Found (%): C, 39.25; H,	Found (%): C, 52.63; H, 5.33;
	4.36; N, 9.51.	4.05; N, 10.30.	5.43; N, 7.37.	N, 6.90.
Magnetic scheme		J_1		
Fitted parameters	$J_1 = 64.1 \text{ cm}^{-1}, J_2 = 5.7$	$J_1 = 20.3 \text{ cm}^{-1}, J_2 = 8.9 \text{ cm}^{-1},$	$J_1 = 35.4 \text{ cm}^{-1}, J_2 = 3.4 \text{ cm}^{-1},$	$J_1 = 5.0 \text{ cm}^{-1}, J_2 = -25.1 \text{ cm}^{-1},$
	$cm^{-1}, g = 2.06$	g = 2.32	g = 2.02	g = 2.18

 Table S6 The IR spectrum data, elemental analyses data and fitted magnetic data of complexes 1–4

- Figure S1. PXRD, I.R spectrum and TG curves for 1.
- Figure S2. PXRD, I.R spectrum and TG curves for 2.
- Figure S3. PXRD, I.R spectrum and TG curves for 3.
- Figure S4. PXRD, I.R spectrum and TG curves for 4.
- **Figure S5.** 2D (4,4) topological supramolecular layers generated from the $[Cu_4(bpy)_4(\mu_2\text{-}OH)_2(\mu_3\text{-}OH)_2]^{4+}$ complex cations based on intercationic face-to-face $\pi \cdots \pi$ stacking interactions in **2**.
- Figure S6. Hydrogen bonded network of disordered nitrate NO_3^- , benzoate $(C_7H_5O_2)^-$ anions and lattice water molecules in **1**.
- Figure S7. Hydrogen bonded network of nitrate NO_3^- , glutarate $(C_5H_6O_4)^{2-}$ anions and lattice water molecules in 2.
- Figure S8. Hydrogen bonded network of glutarate $(C_5H_6O_4)^{2-}$ anions and lattice water molecules in 3.

Figure S1

Figure S2

Figure S3

Figure S4

