ELECTRONIC SUPPORTING INFORMATION

Reduction mechanism of a coordinated superoxide by thiols in acidic media

Ritu Mishra, Subrata Mukhopadhyay and Rupendranath Banerjee*

Department of Chemistry, Jadavpur University, Kolkata 700 032, India.

Contents	Page
Figure S1. Kinetic profile at 700 nm for the reduction of 1 by cys in absence of	S2
dipic.	
Figure S2. Kinetic profile at 700 nm for the reduction of 1 by cys in presence of	S3
dipic.	
Table S1. Cu^{2+} catalysis and its suppression by dipic in the reduction of 1 by	S4
thiols.	
Figure S3. Observed Raman Spectrum for complex 1.	S5
Table S2. Variation of first order rate constant (k_0) with [thiol].	\$6
Figure S4. Variation of first order rate constant (k_0) with $[H^+]^{-1}$ for tga.	S 7
Figure S5. Variation of first order rate constant (k_0) with $[H^+]^{-1}$ for mercap.	S 8
Table S3. Effect of $[H^+]$ on first order rate constant (k_0) .	S9
Table S4. Stoichiometric results for the reduction of 1 by thiols.	S10
Table S5. Estimation of cystine sulfinic acid.	S10

Fig. S1 Kinetic profile at 700 nm for the reduction of **1** (0.50 mM) with cys (5.0 mM) without dipicolinic acid. $[H^+] = 0.05$ M, $[Cu^{2+}] = 5.0 \mu$ M (added as perchlorate salt), I = 0.50 M (NaClO₄), T = 25.0 °C. The solid line is the attempted first-order fit (visibly unacceptable) of the experimental values (solid circles).

Fig. S2 Excellent first-order fit (solid line) to the experimental values (solid circles) for the reduction of **1** (0.50 mM) with cys (5.0 mM). $[H^+] = 0.05$ M, [dipicolinic acid] = 2.0 mM, I = 0.50 M (NaClO₄), T = 25.0 °C.

Table S1. Cu^{2+} catalysis and its suppression by dipicolinic acid, in the reduction of **1** (0.50 mM) with cys (5.0 mM) in acid perchlorate media ([H⁺] = 50.0 mM, I = 0.50 mM (NaClO₄)).

$10^{6}[Cu^{2+}], M$	[dipic], mM	t _{1/2} , s ^a
2.2 (present as impurity in the reaction media ^b)	0.0	164
2.2 (present as impurity in the reaction media ^b)	2.0	330
5.0 (Cu^{2+} added as perchlorate)	1.0	130
5.0 (Cu^{2+} added as perchlorate)	2.0	330
5.0 (Cu^{2+} added as perchlorate)	4.0	330
5.0 (Cu^{2+} added as perchlorate)	0.0	65

^aTime required for initial absorbance of **1** to become half.

^bAs determined by AAS.

Fig. S3Observed Raman Spectrum for complex 1. Peak position expected¹ at 1075 \pm 10 cm⁻¹ for superoxo stretching of a pure sample.

Reference

1. C. G. Barraclough, G. A. Lawrance and P. A. Lay, *Inorg. Chem.*, 1978, 17, 3317.

Table S2. Variation of k_0 with [thiol], [1] = 0.50 mM, [H⁺] = 0.05 M for cys, 0.030 M

 for mercap and tga, [dipicolinic acid] = 2.0 mM, I = 0.50 M (NaClO₄), T = 25.0 °C.

[thiol], M	$10^3 k_{ m o},{ m s}^{-1}$			
	for cys	for mercap	for tga	
0.005	2.4	1.2	3.7	
0.010	4.9	2.5	6.8	
0.013	6.3	3.6	8.8	
0.015	7.3	4.1	9.7	
0.018	9.2	4.7	11.4	
0.020	10.4	5.6	12.5	

Fig. S4 Variation of k_0 with $[H^+]^{-1}$. [tga] = 5.0 mM, [1]= 0.50 mM, [dipicolinic acid] = 2.0 mM, I = 0.5 M (NaClO₄), T = 25.0 °C.

Fig. S5 Variation of k_0 with $[H^+]^{-1}$. [mercap] = 5.0 mM, [1] = 0.50 mM, [dipicolinic acid] = 2.0 mM, I = 0.50 M (NaClO₄), T = 25.0 °C.

Table S3. Effect of $[H^+]$ on k_0 : [1] = 0.50 mM, [thiol] = 5.0 mM, [dipicolinic acid] = 2.0

 mM, I =
 0.5 M (NaClO₄), T = 25 °C.

$[\mathrm{H}^{+}],\mathrm{M}$	$10^3 k_{\rm o}, {\rm s}^{-1}$			
	mercap	tga	cys	
0.010	4.0	9.9	12.4	
0.015	2.7	6.5	8.3	
0.020	1.8	5.0	6.2	
0.030	1.2	3.5	4.1	
0.040	0.92	2.6	3.1	
0.050	0.75	2.1	2.4	
0.060	0.62	1.7	1.9	

Table S4.Stoichiometric results for the oxidation of thiols by 1, $[H^+] = 0.05$ M for cys,0.030 M for mercap and tga, [dipicolinic acid] = 2.0 mM, I = 0.50 M (NaClO₄), T = 25.0 °C.

[1],	Δ[thiol], mM				Av.
mМ		-		Δ [1]/	Δ [1]/ Δ [thiol]
	mercap	tga	cys	Δ [thiol]	
3.0	2.8			1.07	
4.0	4.5			0.97	1.02
2.0		1.9		1.05	
5.0		4.8		1.04	1.04
3.0			1.8	1.67	
5.0			3.1	1.61	1.64

Table S5.Estimation of cystine sulfinic acid, $[H^+] = 0.05$ M, [dipicolinic acid] = 2.0

mM, I = 0.50 M (NaClO₄), T = 25.0 °C.

[1], mM	[cys], mM	unreacted cys, mM	cys oxidized, mM	(unreacted cys + sulfinic acid), mM	[cystine sulfinic acid], mM	% cys converted to sulfinic acid
2.0	2.5	1.3	1.2	1.55	0.25	20.8%
3.0	1.5	0.0	1.5	0.29	0.29	19.3%