## **Supplementary Data**

Protonation and substitution reactions of  $[{WFe_3S_4Cl_3}_2(\mu-L)_3]^{3-}$ (L = SEt or OMe): quantifying how metal content and spectator ligands individually affect reactivity.

B G Garrett and Richard A Henderson

## SUPPLEMENTARY DATA 1

Tables of dependence of  $k_{obs}$  on the concentrations of nucleophile and acids for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-L)_3]^{3-}$  (L = SEt or MeO) in MeCN at 25 °C

*Table 1:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-OMe)_3]^3$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in MeCN at 25 °C. Kinetics measured at  $\lambda = 500$  nm.

| [PhS <sup>-</sup> ] / mmol dm <sup>-3</sup> | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2}/{ m s}^{-1}$ |
|---------------------------------------------|---------------------------------|----------------------------|
| 0.5                                         | 1.5                             | 0.17                       |
| 1.0                                         | 3.4                             | 0.26                       |
| 2.5                                         | 5.1                             | 0.51                       |
| 5.0                                         | 8.0                             | 1.2                        |
| 7.5                                         | 11.0                            | 1.75                       |
| 10.0                                        | 12.8                            | 2.6                        |
| 15.0                                        | 17.8                            | 3.2                        |
| 20.0                                        | 19.5                            | 4.5                        |
| 25.0                                        | 23.0                            | 5.5                        |
| 30.0                                        | 24.0                            | 6.1                        |
| 50.0                                        | 28.9                            | 10                         |

*Table 2:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-SEt)_3]^3$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in MeCN at 25 °C. Kinetics measured at  $\lambda = 500$  nm.

| [PhS <sup>-</sup> ] / mmol dm <sup>-3</sup> | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2}$ / s <sup>-1</sup> |
|---------------------------------------------|---------------------------------|----------------------------------|
| 1.0                                         | 1.02                            | 0.04                             |
| 2.5                                         | 2.03                            | 0.07                             |
| 5.0                                         | 3.3                             | 0.15                             |
| 7.5                                         | 4.7                             | 0.18                             |
| 10.0                                        | 5.7                             | 0.33                             |
| 20.0                                        | 8.1                             | 0.52                             |
| 30.0                                        | 8.9                             | 0.72                             |
| 50.0                                        | 9.8                             | 1.2                              |

*Table 3:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu - OMe)_3]^3$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of  $[NHEt_3]^+$  in MeCN at 25 °C. Kinetics measured at  $\lambda = 500$  nm.

| [NHEt <sub>3</sub> <sup>+</sup> ]<br>/ mmol dm <sup>-3</sup> | [PhS <sup>-</sup> ]<br>/ mmol dm <sup>-3</sup> | [NHEt <sub>3</sub> <sup>+</sup> ]/[NEt <sub>3</sub> ] | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2} /  {\rm s}^{-1}$ |
|--------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------|--------------------------------|
| 0.0                                                          | 2.5                                            |                                                       | 5.5                             | 0.55                           |
| 1.25                                                         |                                                |                                                       | 4.3                             | 0.33                           |
| 2.5                                                          |                                                |                                                       | 2.5                             | 0.23                           |
| 5.0                                                          |                                                | 1                                                     | 6.1                             | 1.24                           |
| 7.5                                                          |                                                | 2                                                     | 10.6                            | 1.8                            |
| 10.0                                                         |                                                | 3                                                     | 11.7                            | 2.4                            |
| 15.0                                                         |                                                | 5                                                     | 12.3                            | 3.0                            |
| 20.0                                                         |                                                | 7                                                     | 13.0                            | 3.3                            |
| 30.0                                                         |                                                | 11                                                    | 13.9                            | 3.7                            |
| 50.0                                                         |                                                | 19                                                    | 14.3                            | 3.75                           |
| 0.0                                                          | 5.0                                            |                                                       | 6.6                             | 0.63                           |
| 2.5                                                          |                                                |                                                       | 5.2                             | 0.32                           |
| 5.0                                                          |                                                |                                                       | 3.3                             | 0.25                           |
| 6.25                                                         |                                                | 0.25                                                  | 5.1                             | 0.67                           |
| 7.5                                                          |                                                | 0.5                                                   | 7.9                             | 0.83                           |
| 8.75                                                         |                                                | 0.75                                                  | 9.2                             | 1.3                            |
| 10.0                                                         |                                                | 1                                                     | 10.4                            | 1.5                            |
| 15.0                                                         |                                                | 2                                                     | 14                              | 1.8                            |
| 30.0                                                         |                                                | 5                                                     | 18                              | 2.8                            |
| 50.0                                                         |                                                | 9                                                     | 20                              | 3.5                            |

*Table 4:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu - OMe)_3]^3$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of  $[NHEt_3]^+$  in MeCN at 25 °C at a constant ratio of  $[NHEt_3^+]_e/[NEt_3] = 5$ . Kinetics measured at  $\lambda = 500$  nm.

| [NHEt <sub>3</sub> <sup>+</sup> ] / mmol dm <sup>-3</sup> | [PhS <sup>-</sup> ]<br>/ mmol dm <sup>-3</sup> | [PhSH] <sub>e</sub><br>/ mmol dm <sup>-3</sup> | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2}$ / s <sup>-1</sup> |
|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------|
| 6.0                                                       | 1.0                                            | 1.0                                            | 7.4                             | 2.5                              |
| 9.0                                                       | 1.5                                            | 1.5                                            | 8                               | 2.8                              |
| 15.0                                                      | 2.5                                            | 2.5                                            | 13                              | 3.0                              |
| 21.0                                                      | 3.5                                            | 3.5                                            | 14.5                            | 2.6                              |
| 30.0                                                      | 5.0                                            | 5.0                                            | 19.3                            | 3.2                              |

*Table 5:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-SEt_3]^{3-}$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of  $[NHEt_3]^+$  in MeCN at 25 °C. Kinetics measured at  $\lambda = 500$  nm.

| [NHEt <sub>3</sub> <sup>+</sup> ]<br>/ mmol dm <sup>-3</sup> | [PhS <sup>-</sup> ]<br>/ mmol dm <sup>-3</sup> | [NHEt <sub>3</sub> <sup>+</sup> ]/[NEt <sub>3</sub> ] | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2}/{ m s}^{-1}$ |
|--------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------|----------------------------|
| 0.0                                                          | 2.5                                            |                                                       | 2.2                             | 0.65                       |
| 1.0                                                          |                                                |                                                       | 1.36                            | 0.65                       |
| 2.5                                                          |                                                |                                                       | 0.9                             | 0.20                       |
| 5.0                                                          |                                                | 1                                                     | 2.7                             | 0.72                       |
| 6.0                                                          |                                                | 1.4                                                   | 3.1                             | 0.75                       |
| 7.5                                                          |                                                | 2                                                     | 4.1                             | 0.82                       |
| 10.0                                                         |                                                | 3                                                     | 5                               | 0.88                       |
| 20.0                                                         |                                                | 7                                                     | 5.3                             | 0.98                       |
| 30.0                                                         |                                                | 11                                                    | 5.6                             | 1.30                       |
| 50.0                                                         |                                                | 19                                                    | 5.9                             | 1.35                       |
| 0.0                                                          | 5.0                                            |                                                       | 2.6                             | 0.62                       |
| 1.0                                                          |                                                |                                                       | 2.1                             | 0.45                       |
| 2.5                                                          |                                                |                                                       | 1.7                             | 0.43                       |
| 5.0                                                          |                                                |                                                       | 0.8                             | 0.20                       |
| 6.0                                                          |                                                | 0.2                                                   | 2.3                             | 0.60                       |
| 7.5                                                          |                                                | 0.3                                                   | 4.4                             | 0.73                       |
| 10.0                                                         |                                                | 1                                                     | 5.1                             | 1.2                        |
| 20.0                                                         |                                                | 3                                                     | 8.1                             | 1.8                        |
| 30.0                                                         |                                                | 5                                                     | 9                               | 2.1                        |
| 50.0                                                         |                                                | 9                                                     | 10                              | 2.2                        |

*Table 6:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-SEt)_3]^{3-}$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of  $[NHEt_3]^+$  in MeCN at 25 °C at a constant ratio of  $[NHEt_3^+]_e/[NEt_3] = 3$ . Kinetics measured at  $\lambda = 500$  nm.

| [NHEt <sub>3</sub> <sup>+</sup> ]<br>/ mmol dm <sup>-3</sup> | [PhS <sup>-</sup> ]<br>/ mmol dm <sup>-3</sup> | [PhSH] <sub>e</sub><br>/ mmol dm <sup>-3</sup> | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2}$ / s <sup>-1</sup> |
|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------|
| 2.0                                                          | 0.5                                            | 0.5                                            | 1.2                             | 0.18                             |
| 4.0                                                          | 1.0                                            | 1.0                                            | 2.4                             | 0.57                             |
| 8.0                                                          | 2.0                                            | 2.0                                            | 3.4                             | 0.83                             |
| 10.0                                                         | 2.5                                            | 2.5                                            | 4.9                             | 0.88                             |
| 16.0                                                         | 4.0                                            | 4.0                                            | 7.1                             | 1.05                             |
| 20.0                                                         | 5.0                                            | 5.0                                            | 8.7                             | 1.8                              |

*Table 7:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu$ -OMe)\_3]<sup>3-</sup> (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of  $[pyrrH]^+$  in MeCN at 25 °C. Kinetics measured at  $\lambda = 400$  nm.

| [pyrrH <sup>+</sup> ] / mmol dm <sup>-3</sup> | [PhS <sup>-</sup> ] / mmol dm <sup>-3</sup> | $k_{ m obs}$ / s <sup>-1</sup> | $k_{\rm obs2} /  {\rm s}^{-1}$ |
|-----------------------------------------------|---------------------------------------------|--------------------------------|--------------------------------|
| 1.25                                          | 1.25                                        | 1.68                           | 0.08                           |
| 2.5                                           |                                             | 1.84                           | 0.16                           |
| 5.0                                           |                                             | 2                              | 0.30                           |
| 10.0                                          |                                             | 2.5                            | 0.70                           |
| 20.0                                          |                                             | 3.1                            | 1.0                            |
| 30.0                                          |                                             | 3.5                            | 2.3                            |
| 1.25                                          | 2.5                                         | 3.2                            | 0.12                           |
| 2.5                                           |                                             | 3.5                            | 0.26                           |
| 5.0                                           |                                             | 4.0                            | 0.62                           |
| 10.0                                          |                                             | 5.0                            | 1.2                            |
| 20.0                                          |                                             | 6.2                            | 2.5                            |
| 30.0                                          |                                             | 6.3                            | 3.5                            |
| 1.25                                          | 5.0                                         | 6.0                            | 0.22                           |
| 2.5                                           |                                             | 6.8                            | 0.7                            |
| 5.0                                           |                                             | 8.1                            | 1.33                           |
| 10.0                                          |                                             | 10                             | 2.5                            |
| 20.0                                          |                                             | 13.6                           | 4.6                            |
| 30.0                                          |                                             | 13.0                           | 8.0                            |

*Table 8:* Kinetic data for the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-SEt)_3]^{3-}$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of  $[pyrrH]^+$  in MeCN at 25 °C. Kinetics measured at  $\lambda = 400$  nm.

| [pyrrH <sup>+</sup> ] / mmol dm <sup>-3</sup> | [PhS <sup>-</sup> ] / mmol dm <sup>-3</sup> | $k_{\rm obs}$ / s <sup>-1</sup> | $k_{\rm obs2}$ / s <sup>-1</sup> |
|-----------------------------------------------|---------------------------------------------|---------------------------------|----------------------------------|
| 1.0                                           | 2.5                                         | 1.36                            | 0.04                             |
| 2.5                                           |                                             | 1.50                            | 0.07                             |
| 5.0                                           |                                             | 1.67                            | 0.16                             |
| 10.0                                          |                                             | 1.88                            |                                  |
| 20.0                                          |                                             | 2.08                            | 0.55                             |
| 40.0                                          |                                             | 2.25                            | 1.2                              |
| 1.0                                           | 5.0                                         | 2.7                             | 0.07                             |
| 2.5                                           |                                             | 3.0                             | 0.18                             |
| 5.0                                           |                                             | 3.4                             | 0.34                             |
| 10.0                                          |                                             | 3.8                             | 0.6                              |
| 20.0                                          |                                             | 4.1                             | 1.0                              |
| 40.0                                          |                                             | 4.7                             | 2.1                              |

### SUPPLEMENTARY DATA 2

Graphs of the kinetic data shown in Tables 1 - 8 used to determine the rate laws of the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-L)_3]^{3-}$  (L = SEt or MeO) in MeCN at 25 °C.

(All curves drawn through the data are those defined by the corresponding experimental rate law shown in Supplementary Data 3)

Plots of  $k_{obs}$  versus [PhS<sup>-</sup>] for the reaction of [{WFe<sub>3</sub>S<sub>4</sub>Cl<sub>3</sub>}<sub>2</sub>( $\mu$ -OMe)<sub>3</sub>]<sup>3-</sup> (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in MeCN at 25 °C. The kinetics for phase 1 is shown in the top graph 1. and the kinetics for phase 2 is shown in the bottom graph.







2. Plots of  $k_{obs}$  versus [PhS<sup>-</sup>] for the reaction of [{WFe<sub>3</sub>S<sub>4</sub>Cl<sub>3</sub>}<sub>2</sub>( $\mu$ -SEt)<sub>3</sub>]<sup>3-</sup> (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in MeCN at 25 °C. The kinetics for phase 1 is shown in the top graph and the kinetics for phase 2 is shown in the bottom graph.







3. Plots of  $k_{obs}$  versus [NHEt<sub>3</sub><sup>+</sup>]/[NEt<sub>3</sub>] for the reaction of [{WFe<sub>3</sub>S<sub>4</sub>Cl<sub>3</sub>}<sub>2</sub>( $\mu$ -OMe)<sub>3</sub>]<sup>3-</sup> (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of an excess of [NHEt<sub>3</sub>]<sup>+</sup> in MeCN at 25 °C. The kinetics for phase 1 is shown in the top graph and the kinetics for phase 2 is shown in the bottom graph. The data points correspond to [PhSH] = 2.5 (•) and [PhSH] = 5.0 mmol dm<sup>-3</sup> ( $\blacktriangle$ ). In insert for phase 1, data show the dependence of  $k_{obs}$ on [PhSH], at constant [NHEt<sub>3</sub><sup>+</sup>]/[NEt<sub>3</sub>] = 5.0 ( $\blacksquare$ ).





PHASE 2



4. Plots of  $k_{obs}/[PhSH]$  versus  $[NHEt_3^+]/[NEt_3]$  for the reaction of  $[\{WFe_3S_4Cl_3\}_2(\mu-SEt)_3]^{3-}$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of an excess of  $[NHEt_3]^+$  in MeCN at 25 °C. The kinetics for phase 1 is shown in the top graph and the kinetics for phase 2 is shown in the bottom graph. The data points correspond to [PhSH] = 2.5 mmol dm<sup>-3</sup> (•) and [PhSH] = 5.0 mmol dm<sup>-3</sup> (•).



PHASE 1 (Figure 5 in text)

5. Plots of  $k_{obs}/[PhS^-]$  versus  $[pyrH^+]$  for the reaction of  $[\{WFe_3S_4Cl_3\}_2(\mu-OMe)_3]^{3-}$ (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of pyrH<sup>+</sup> in MeCN at 25 °C. The kinetics for phase 1 is shown in the top graph and the kinetics for phase 2 is shown in the bottom graph. Data points correspond to  $[PhS^-] = 1.25 \text{ mmol dm}^{-3}$ ,  $[PhS^-] = 2.5 \text{ mmol dm}^{-3}$  (•) and  $[PhS^-] = 5.0 \text{ mmol dm}^{-3}$  (•).







6. Plots of  $k_{obs}/[PhS^-]$  versus  $[pyrH^+]$  for the reaction of  $[\{WFe_3S_4Cl_3\}_2(\mu-SEt)_3]^3$  (0.025 mmol dm<sup>-3</sup>) with PhS<sup>-</sup> in the presence of pyrH<sup>+</sup> in MeCN at 25 °C. The kinetics for phase 1 is shown in the top graph and the kinetics for phase 2 is shown in the bottom graph. Data points correspond to  $[PhS^-] = 2.5 \text{ mmol dm}^{-3}$  (•) and  $[PhS^-] = 5.0 \text{ mmol dm}^{-3}$  (•).



## SUPPLEMENTARY DATA 3

Rate laws for first and second phases of the reactions of  $[{WFe_3S_4Cl_3}_2(\mu-L)_3]^{3-}$  (L = SEt or MeO) in MeCN at 25 °C

## A. Rate Laws for the reactions of $[{WFe_3S_4Cl_3}_2(\mu-OMe)_3]^3$ .

#### (i) Reaction with $PhS^{-}$

Phase 1:

Rate = 
$$2 \times 10^{3}$$
 [PhS<sup>-</sup>][WFeS]  
 $1 + 50$ [PhS<sup>-</sup>]

Phase 2:

Rate = 
$$2 \times 10^2$$
 [PhS<sup>-</sup>][WFeS]

(ii) Reaction with PhS<sup>-</sup> in the presence of an excess of  $[NHEt_3]^+$ 

Phase 1:

Rate =  $\frac{\{(4 + 3.2 \text{ x } 10^{3} [PhSH])[NHEt_{3}^{+}]/[NEt_{3}]\}}{1 + 0.8[NHEt_{3}^{+}]/[NEt_{3}]}[WFeS]$ 

Phase 2:

Rate = 
$$\frac{\{1.8[\text{NHEt}_3^+]/[\text{NEt}_3]\}[\text{WFeS}]}{1 + 0.41[\text{NHEt}_3^+]/[\text{NEt}_3]}$$

## (iii) Reaction with $PhS^{-}$ in the presence of $[pyrH]^{+}$

Phase 1:

Rate = 
$$\frac{(1.2 \times 10^3 + 2.13 \times 10^5 [pyrH^+])[PhS^-][WFeS]}{1 + 71.3 [pyrH^+]}$$

Phase 2:

Rate = 
$$5.2 \times 10^{4}$$
 [PhS<sup>-</sup>][pyrH<sup>+</sup>][W<sub>2</sub>]

# B. Rate Laws for the reactions of $[{WFe_3S_4Cl_3}_2(\mu-SEt)_3]^3$ .

#### (i) Reaction with $PhS^{-}$

Phase 1:

$$Rate = \frac{1 \times 10^{3} [PhS^{-}][WFeS]}{1 + 80 [PhS^{-}]}$$

Phase 2:

Rate = 25[PhS<sup>-</sup>][WFeS]

(ii) Reaction with  $PhS^{-}$  in the presence of an excess of  $[NHEt_3]^{+}$ 

Phase 1:

Rate = 
$$\frac{\{1.5 \text{ x } 10^{3} [\text{PhSH}][\text{NHEt}_{3}^{+}]/[\text{NEt}_{3}]\}[\text{WFeS}]}{1 + 0.55 [\text{NHEt}_{3}^{+}]/[\text{NEt}_{3}]}$$

Phase 2:

Rate = 
$$\frac{\{350[PhSH][NHEt_3^+]/[NEt_3]\}}{1 + 0.6[NHEt_3^+]/[NEt_3]}$$
[WFeS]

## (iii) Reaction with $PhS^{-}$ in the presence of $[pyrH]^{+}$

Phase 1:

Rate = 
$$(500 + 1.0 \times 10^{5} [pyrH^{+}])[PhS^{-}][WFeS]$$
  
 $1 + 1.0 \times 10^{2} [pyrH^{+}]$ 

Phase 2:

Rate = 
$$1.2 \times 10^{4}$$
[PhS<sup>-</sup>][pyrH<sup>+</sup>][WFeS]