Electronic Supplementary Information (ESI) concerning the manuscript:

Variation of the ground spin state in homo- and heterooctanuclear copper(II) and nickel(II) double-star complexes with a meso-helicate-type metallacryptand core

Emilio Pardo, Marie-Claire Dul, Rodrigue Lescouëzec, Lise-Marie Chamoreau, Yves Journaux,* Jorge Pasán, Catalina Ruiz-Pérez, Miguel Julve, Francesc Lloret,* Rafael Ruiz-García and Joan Cano*

Table of contents

Preparation of the ligands

$\mathrm{H}_{4} \mathrm{mpba}$S2
H_{4} Mempba S2
Preparation of the binuclear nickel(II) complexes
$\mathrm{Na}_{8}\left[\mathrm{Ni}_{2}(\mathrm{mpba})_{3}\right] \cdot \mathbf{1 2 H}_{\mathbf{2}} \mathrm{O}$ S3
$\mathbf{N a}_{8}\left[\mathrm{Ni}_{2}(\text { Mempba })_{3}\right] \cdot \mathbf{1 8 H}_{\mathbf{2}} \mathrm{O}$ S3
Magnetic propertiesFig. S1 Temperature dependence of $\chi_{\mathrm{M}} T$ of $\mathrm{Na}_{8}\left[\mathrm{Ni}_{2}(\mathrm{mpba})_{3}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}$and $\mathrm{Na}_{8}\left[\mathrm{Ni}_{2}(\text { Mempba })_{3}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$S4
Table S1 Spin states and energies for an octanuclear copper(II) complex with a "dimer-of-tetramers" structure S5
Table S2 Spin states and energies for an octanuclear nickel(II)-copper(II) complex with a "dimer-of-tetramers" structure S6
Table S3 Spin states and energies for an octanuclear nickel(II) complex with a "dimer-of-tetramers" structure S8

Preparation of the ligands

$\mathbf{H}_{\mathbf{2}} \mathbf{E t} \mathbf{2} \mathbf{m p b a}$. Ethyl oxalyl chloride ester ($14.0 \mathrm{~mL}, 120 \mathrm{mmol}$) was added to a solution of 1,3phenylenediamine ($6.5 \mathrm{~g}, 60 \mathrm{mmol}$) and triethylamine ($16.8 \mathrm{~mL}, 120 \mathrm{mmol}$) in THF (250 mL) under vigorous stirring at $0^{\circ} \mathrm{C}$. The reaction mixture was brought up to reflux for 1 h and then it was filtered to remove the precipitate of triethylammonium chloride. Solvent elimination under vacuum of the filtered solution afforded a white solid, which was treated with water, collected by filtration, washed with diethyl ether, and dried under vacuum (16.6 g, yield 90\%). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}(M=308):$ C, $54.55 ; \mathrm{H}, 5.19 ; \mathrm{N}, 9.09 \%$. Found: C, $54.57 ; \mathrm{H}, 5.18 ; \mathrm{N}, 9.04 \% .{ }^{1} \mathrm{H}$ NMR [($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \mathrm{ppm}\right]: \delta 1.32\left(\mathrm{t}, 6 \mathrm{H} ; 2 \mathrm{CH}_{3}\right.$ from ethyl groups), $4.31\left(\mathrm{q}, 4 \mathrm{H} ; 2 \mathrm{CH}_{2}\right.$ from ethyl groups), 7.34 (dt, 1 H ; 5-H from phenylene group), 7.50 (dd, 2 H ; 4-H and 6-H from phenylene group), $8.22\left(\mathrm{t}, 1 \mathrm{H} ; 2-\mathrm{H}\right.$ from phenylene group), $10.83(\mathrm{~s}, 2 \mathrm{H} ; 2 \mathrm{NH}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3349$ (NH), 1725, 1715, 1698 (CO).
$\mathbf{H}_{2} \mathbf{E t} \mathbf{2} \mathbf{M e m p b a}$. Ethyl oxalyl chloride ester ($14.0 \mathrm{~mL}, 120 \mathrm{mmol}$) was added to a solution of 2,4-toluenediamine ($7.3 \mathrm{~g}, 60 \mathrm{mmol}$) and triethylamine ($16.8 \mathrm{~mL}, 120 \mathrm{mmol}$) in THF (250 mL) under vigorous stirring at $0^{\circ} \mathrm{C}$. The reaction mixture was brought up to reflux for 1 h and then it was filtered to remove the precipitate of triethylammonium chloride. Solvent elimination under vacuum of the filtered solution afforded a white solid, which was treated with water, collected by filtration, washed with diethyl ether, and dried under vacuum (15.5 g, yield 80\%). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{6}(M=322): \mathrm{C}, 55.90 ; \mathrm{H}, 5.59 ; \mathrm{N}, 8.70 \%$. Found: C, $56.12 ; \mathrm{H}, 5.63 ; \mathrm{N}, 8.47 \% .{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \mathrm{ppm}\right]: \delta 1.80\left(\mathrm{t}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$ from ethyl group), $1.82\left(\mathrm{t}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$ from ethyl group), $3.24\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$ from phenylene group), $4.79\left(\mathrm{q}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right.$ from ethyl group), $4.82(\mathrm{q}, 2$ $\mathrm{H} ; \mathrm{CH}_{2}$ from ethyl group), $7.72(\mathrm{~d}, 1 \mathrm{H} ; 5-\mathrm{H}$ from phenylene group), $8.11(\mathrm{~d}, 1 \mathrm{H} ; 6-\mathrm{H}$ from
phenylene group), $8.62(\mathrm{~s}, 1 \mathrm{H} ; 2-\mathrm{H}$ from phenylene group), $9.85(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{NH}), 10.37(\mathrm{~s}, 1 \mathrm{H}$; NH). IR (KBr, cm^{-1}): $3460(\mathrm{NH}), 1735,1700,1610(\mathrm{CO})$.

Preparation of the binuclear nickel(II) complexes

$\mathbf{N a}_{\mathbf{8}}\left[\mathbf{N i}_{\mathbf{2}}(\mathbf{m p b a})_{3}\right] \cdot \mathbf{1 2 H} \mathbf{\mathbf { H } _ { 2 }} \mathbf{O}$. An aqueous solution (15 mL) of $\mathrm{NaOH}(0.96 \mathrm{~g}, 24.0 \mathrm{mmol})$ was added to a suspension of the diethyl ester derivative of $\mathrm{H}_{4} \mathrm{mpba}(1.84 \mathrm{~g}, 6.0 \mathrm{mmol}$) in water (35 $\mathrm{mL})$ under stirring. $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.16 \mathrm{~g}, 4.0 \mathrm{mmol})$ dissolved in water $(5 \mathrm{~mL})$ was then added dropwise to the clear solution under stirring. The resulting deep green solution was filtered on paper to eliminate the small amount of solid particles. Solvent reduction under vacuum of the filtered solution afforded a blue-greenish solid, which was collected by filtration, washed with ethanol and diethyl ether, and air-dried (2.15 g, yield 85\%). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{Na}_{8} \mathrm{Ni}_{2} \mathrm{O}_{30}(M$ $=1261):$ C, $28.53 ; \mathrm{H}, 2.85 ; \mathrm{N}, 6.66 \%$. Found: C, $29.11 ; \mathrm{H}, 3.03 ; \mathrm{N}, 6.59 \%$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 1585 (CO).
$\mathbf{N a}_{\mathbf{8}}\left[\mathbf{N i}_{\mathbf{2}}(\mathbf{M e m p b a})_{3}\right] \cdot \mathbf{1 8 H}_{\mathbf{2}} \mathbf{O}$. An aqueous solution $(15 \mathrm{~mL})$ of $\mathrm{NaOH}(0.96 \mathrm{~g}, 24.0 \mathrm{mmol})$ was added to a suspension of the diethyl ester derivative of H_{4} Mempba ($1.93 \mathrm{~g}, 6.0 \mathrm{mmol}$) in water $(35 \mathrm{~mL})$ under stirring. $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.16 \mathrm{~g}, 4.0 \mathrm{mmol})$ dissolved in water $(5 \mathrm{~mL})$ was then added dropwise to the clear solution under stirring. The resulting deep green solution was filtered on paper to eliminate the small amount of solid particles. Solvent reduction under vacuum of the filtered solution afforded a blue-greenish solid, which was collected by filtration, washed with ethanol and diethyl ether, and air-dried (2.10 g , yield 75%). Anal. calc. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{6} \mathrm{Na}_{8} \mathrm{Ni}_{2} \mathrm{O}_{36}(M=1411)$: C, 28.07; H, 3.83; N, 5.95%. Found: C, $28.31 ; \mathrm{H}, 3.80 ; \mathrm{N}, 5.85$ \%. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1590(\mathrm{C}=\mathrm{O})$.

Magnetic Properties

Fig. S1 Temperature dependence of $\chi_{\mathrm{M}} T$ of $\mathrm{Na}_{8}\left[\mathrm{Ni}_{2}(\mathrm{mpba})_{3}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}(\mathrm{O})$ and $\mathrm{Na}_{8}\left[\mathrm{Ni}_{2}(\mathrm{Mempba})_{3}\right]$
$\cdot 18 \mathrm{H}_{2} \mathrm{O}(\mathrm{)}$. Solid lines are the best-fit curves (see text, footnote \ddagger).

Table S1 Spin states and energies for an octanuclear copper(II) complex with a "dimer-oftetramers" structure ${ }^{a, b, c}$

$S^{*}{ }_{\text {A }}$	$S_{\text {A }}$	$S^{*}{ }_{\text {B }}$	$S_{\text {B }}$	S	E	n
1/2	0	1/2	0	0	-J	4
1/2	0	1/2	1	1	-2 J	4
1/2	0	3/2	1	1	$-1 / 2 \mathrm{~J}$	2
1/2	0	3/2	2	2	$-5 / 2 \mathrm{~J}$	2
1/2	1	1/2	0	1	-2 J	4
1/2	1	1/2	1	0	-3 J	4
1/2	1	1/2	1	1	-3 J	4
1/2	1	1/2	1	2	-3 J	4
1/2	1	3/2	1	0	-3/2 J	2
1/2	1	3/2	1	1	-3/2 J	2
1/2	1	3/2	1	2	-3/2 J	2
1/2	1	3/2	2	1	-7/2 J	2
1/2	1	3/2	2	2	-7/2 J	2
1/2	1	3/2	2	3	-7/2 J	2
3/2	1	1/2	0	1	$-1 / 2 \mathrm{~J}$	2
3/2	1	1/2	1	0	$-3 / 2 \mathrm{~J}$	2
3/2	1	1/2	1	1	-3/2 J	2
3/2	1	1/2	1	2	$-3 / 2 J$	2
3/2	1	3/2	1	0	$2 j_{\text {eff }}$	1
3/2	1	3/2	1	1	$j_{\text {eff }}$	1
3/2	1	3/2	1	2	$-j_{\text {eff }}$,
3/2	1	3/2	2	1	-2 J	1
3/2	1	3/2	2	2	-2 J	1
3/2	1	3/2	2	3	-2 J	1
3/2	2	1/2	0	2	-5/2 J	2
3/2	2	1/2	1	1	-7/2 J	2
3/2	2	1/2	1	2	-7/2 J	2
3/2	2	1/2	1	3	-7/2 J	2
3/2	2	3/2	1	1	-2 J	1
3/2	2	3/2	1	2	-2 J	1
3/2	2	3/2	1	3	-2 J	1
3/2	2	3/2	2	0	-4 J	1
3/2	2	3/2	2	1	-4 J	1
3/2	2	3/2	2	2	-4 J	1
3/2	2	3/2	2	3	-4 J	1
3/2	2	3/2	2	4	-4 J	1

${ }^{a} S$ are the spin values of the $\mathrm{Cu}^{\mathrm{II}}{ }_{8}$ entity, S_{A} and S_{B} are the spin values of each $\mathrm{Cu}^{\mathrm{II}}{ }_{4}$ star unit, and $S^{*}{ }_{\mathrm{A}}$ and $S_{\mathrm{B}}{ }_{\mathrm{B}}$ are the intermediate spin values corresponding to the coupling of the three peripheral $\mathrm{Cu}^{\mathrm{II}}$ ions of each $\mathrm{Cu}^{\mathrm{II}}{ }_{4}$ star unit. ${ }^{b} E$ and n are the spin state energy and the number of degenerated spin states. ${ }^{c} J$ and $j_{\text {eff }}$ are the intratetramer and effective intertetramer coupling parameters as defined in eq S1 [with $S_{1 \mathrm{~A}}=S_{3 \mathrm{~A}}=S_{4 \mathrm{~A}}=S_{5 \mathrm{~A}}=S_{2 \mathrm{~B}}=S_{6 \mathrm{~B}}=S_{7 \mathrm{~B}}=S_{8 \mathrm{~B}}=S_{\mathrm{Cu}}=1 / 2$ and $S_{\mathrm{A}}=S_{\mathrm{B}}=1$].

Table S2 Spin states and energies for an octanuclear nickel(II) copper(II) complex with a "dimer-of-tetramers" structure ${ }^{a b, c}$

$S^{*}{ }_{\text {A }}$	$S_{\text {A }}$	$S^{*}{ }_{\text {B }}$	$S_{\text {B }}$	S	E	n
1/2	1/2	1/2	1/2	0	-3 J	4
1/2	1/2	1/2	1/2	1	-3 J	4
1/2	1/2	1/2	3/2	1	-9/2 J	4
1/2	1/2	1/2	3/2	2	-9/2 J	4
1/2	1/2	3/2	1/2	0	$-3 / 2 \mathrm{~J}$	2
1/2	1/2	3/2	1/2	1	$-3 / 2 J$	2
1/2	1/2	3/2	3/2	1	-3 J	2
1/2	1/2	3/2	3/2	2	-3 J	2
1/2	1/2	3/2	5/2	2	-11/2 J	2
1/2	1/2	3/2	5/2	3	-11/2 J	2
1/2	3/2	1/2	1/2	1	-9/2 J	4
1/2	3/2	1/2	1/2	2	-9/2 J	4
1/2	3/2	1/2	3/2	0	-6 J	4
1/2	3/2	1/2	3/2	1	-6 J	4
1/2	3/2	1/2	3/2	2	-6 J	4
1/2	3/2	1/2	3/2	3	-6 J	4
1/2	3/2	3/2	1/2	1	-3 J	2
1/2	3/2	3/2	1/2	2	-3 J	2
1/2	3/2	3/2	3/2	0	-9/2 J	2
1/2	3/2	3/2	3/2	1	-9/2 J	2
1/2	3/2	3/2	3/2	2	-9/2 J	2
1/2	3/2	3/2	3/2	3	-9/2 J	2
1/2	3/2	3/2	5/2	1	-7 J	2
1/2	3/2	3/2	5/2	2	-7 J	2
1/2	3/2	3/2	5/2	3	-7 J	2
1/2	3/2	3/2	5/2	4	-7 J	2
3/2	1/2	1/2	1/2	0	$-3 / 2 \mathrm{~J}$	2
3/2	1/2	1/2	1/2	1	$-3 / 2 \mathrm{~J}$	2
3/2	1/2	1/2	3/2	1	-3 J	2
3/2	1/2	1/2	3/2	2	-3 J	2
3/2	1/2	3/2	1/2	0	$-3 / 4 j_{\text {eff }}$	1
3/2	1/2	3/2	1/2	1	$-1 / 4 j_{\text {eff }}$	1
3/2	1/2	3/2	3/2	,	-3/2 J	1
3/2	1/2	3/2	3/2	2	$-3 / 2 J$	1
3/2	1/2	3/2	5/2	2	-4 J	1
3/2	1/2	3/2	5/2	3	-4 J	1
3/2	3/2	1/2	1/2	1	-3 J	2
3/2	3/2	1/2	1/2	2	-3 J	2
3/2	3/2	1/2	3/2	0	-9/2 J	2
3/2	3/2	1/2	3/2	1	-9/2 J	2
3/2	3/2	1/2	3/2	2	-9/2 J	2
3/2	3/2	$1 / 2$	3/2	3	$-9 / 2 \mathrm{~J}$	2

$3 / 2$	$3 / 2$	$3 / 2$	$1 / 2$	1	$-3 / 2 J$	1
$3 / 2$	$3 / 2$	$3 / 2$	$1 / 2$	2	$-3 / 2 J$	1
$3 / 2$	$3 / 2$	$3 / 2$	$3 / 2$	0	$-3 J$	1
$3 / 2$	$3 / 2$	$3 / 2$	$3 / 2$	1	$-3 J$	1
$3 / 2$	$3 / 2$	$3 / 2$	$3 / 2$	2	$-3 J$	1
$1 / 2$	$3 / 2$	$3 / 2$	$3 / 2$	3	$-3 J$	1
$1 / 2$	$3 / 2$	$3 / 2$	$5 / 2$	1	$-11 / 2 J$	1
$1 / 2$	$3 / 2$	$3 / 2$	$5 / 2$	2	$-11 / 2 J$	1
$1 / 2$	$3 / 2$	$3 / 2$	$5 / 2$	3	$-11 / 2 J$	1
$1 / 2$	$3 / 2$	$3 / 2$	$5 / 2$	4	$-11 / 2 J$	1
$3 / 2$	$5 / 2$	$1 / 2$	$1 / 2$	2	$-11 / 2 J$	2
$3 / 2$	$5 / 2$	$1 / 2$	$1 / 2$	3	$-11 / 2 J$	2
$3 / 2$	$5 / 2$	$1 / 2$	$3 / 2$	1	$-7 J$	2
$3 / 2$	$5 / 2$	$1 / 2$	$3 / 2$	2	$-7 J$	2
$3 / 2$	$5 / 2$	$1 / 2$	$3 / 2$	3	$-7 J$	2
$3 / 2$	$5 / 2$	$1 / 2$	$3 / 2$	4	$-7 J$	2
$3 / 2$	$5 / 2$	$3 / 2$	$1 / 2$	2	$-4 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$1 / 2$	3	$-4 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$3 / 2$	1	$-11 / 2 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$3 / 2$	2	$-11 / 2 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$3 / 2$	3	$-11 / 2 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$3 / 2$	4	$-11 / 2 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$5 / 2$	0	$-8 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$5 / 2$	1	$-8 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$5 / 2$	2	$-8 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$5 / 2$	3	$-8 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$5 / 2$	4	$-8 J$	1
$3 / 2$	$5 / 2$	$3 / 2$	$5 / 2$	5	$-8 J$	1

${ }^{a} S$ are the spin values of the $\mathrm{Ni}^{I I}{ }_{2} \mathrm{Cu}^{\mathrm{II}}{ }_{6}$ entity, S_{A} and S_{B} are the spin values of each $\mathrm{Ni}^{\mathrm{II}} \mathrm{Cu}^{\mathrm{II}}{ }_{3}$ star unit, and S_{A} and $S^{*_{\mathrm{B}}}$ are the intermediate spin values corresponding to the coupling of the three peripheral $\mathrm{Cu}^{\mathrm{II}}$ ions of each $\mathrm{Ni}^{\text {II }} \mathrm{Cu}^{\mathrm{II}}{ }_{3}$ star unit. ${ }^{b} E$ and n are the spin state energy and the number of degenerated spin states. ${ }^{c} J$ and $j_{\text {eff }}$ are the intratetramer and effective intertetramer coupling parameters as defined in eq S 1 [with $S_{1 \mathrm{~A}}=S_{2 \mathrm{~B}}=S_{\mathrm{Ni}}=1, S_{3 \mathrm{~A}}=S_{4 \mathrm{~A}}=S_{5 \mathrm{~A}}=S_{6 \mathrm{~B}}=S_{7 \mathrm{~B}}=S_{8 \mathrm{~B}}=S_{\mathrm{Cu}}=$ $1 / 2$, and $\left.S_{\mathrm{A}}=S_{\mathrm{B}}=1 / 2\right]$.

Table S3 Spin states and energies for an octanuclear nickel(II) complex with a "dimer-oftetramers" structure ${ }^{a, b, c}$

$S^{*}{ }_{\text {A }}$	$S_{\text {A }}$	$S^{*}{ }_{\text {B }}$	$S_{\text {B }}$	S	E	n
0	1	0	1	0	-8 J	1
0	1	0	1	1	-8 J	1
0	1	0	1	2	-8 J	1
0	1	1	0	1	-6 J	3
0	1	1	1	0	-7 J	3
0	1	1	1	1	-7 J	3
0	1	1	,	2	-7 J	3
0	1	1	2	1	-9 J	3
0	1	1	2	2	-9 J	3
0	1	1	2	3	-9 J	3
0	1	2	1	0	-5 J	2
0	1	2	1	1	-5 J	2
0	1	2	1	2	-5 J	2
0	1	2	2	1	-7 J	2
0	1	2	2	2	-7 J	2
0	1	2	2	3	-7 J	2
0	1	2	3	2	$-10 \mathrm{~J}$	2
0	1	2	3	3	$-10 \mathrm{~J}$	2
0	1	2	3	4	-10 J	2
0	1	3	2	1	-4 J	1
0	1	3	2	2	-4 J	1
0	1	3	2	3	-4 J	1
0	1	3	3	2	-7 J	
0	1	3	3	3	-7 J	1
0	1	3	3	4	-7 J	1
0	1	3	4	3	$-11 \mathrm{~J}$	1
0	1	3	4	4	-11 J	1
0	1	3	4	5	$-11 \mathrm{~J}$	1
1	0	0	1	1	-6 J	3
1	0	1	0	0	-4 J	9
1	0	1	1	1	-5 J	9
1	0	1	2	2	-7 J	9
1	0	2	1	1	-3 J	6
1	0	2	2	2	-5 J	6
1	0	2	3	3	-8 J	6
1	0	3	2	2	-2 J	3
1	0	3	3	3	-5 J	3
1	0	3	4	4	-9 J	3
1	1	0	1	0	-7 J	3
1	1	0	1	1	-7 J	3
1	1	0	1	2	-7 J	3
1	1	1	0	1	-5 J	9

1	1	1	1	0	-6 J	9
1	1	1	1	1	-6 J	9
1	1	1	1	2	-6 J	9
1	1	1	2	1	-8 J	9
1	1	1	2	2	-8 J	9
1	1	1	2	3	-8 J	9
1	1	2	1	0	-4 J	6
1	1	2	1	1	-4 J	6
1	1	2	1	2	-4 J	6
1	1	2	2	1	-6 J	6
1	1	2	2	2	-6 J	6
1	1	2	2	3	-6 J	6
1	1	2	3	2	-9 J	6
1	1	2	3	3	-9 J	6
1	1	2	3	4	-9 J	6
1	1	3	2	1	-3 J	3
1	1	3	2	2	-3 J	3
1	1	3	2	3	-3 J	3
1	1	3	3	2	-6 J	3
1	1	3	3	3	-6 J	3
1	1	3	3	4	-6 J	3
1	1	3	4	3	-10 J	3
1	1	3	4	4	-10 J	3
1	1	3	4	5	-10 J	3
1	2	0	1	1	-9 J	3
1	2	0	1	2	-9 J	3
1	2	0	1	3	-9 J	3
1	2	1	0	2	-7 J	9
1	2	1	1	1	-8 J	9
1	2	1	1	2	-8 J	9
1	2	1	1	3	-8 J	9
1	2	1	2	0	-10 J	9
1	2	1	2	1	-10 J	9
1	2	1	2	2	-10 J	9
1	2	1	2	3	-10 J	9
1	2	1	2	4	-10 J	9
1	2	2	1	1	-6 J	6
1	2	2	1	2	-6 J	6
1	2	2	1	3	-6 J	6
1	2	2	2	0	-8 J	6
1	2	2	2	1	-8 J	6
1	2	2	2	2	-8 J	6
1	2	2	2	3	-8 J	6
1	2	2	2	4	-8 J	6
1	2	2	3	1	-11 J	6
1	2	2	3	2	-11 J	6

1	2	2	3	3	-11 J	6
1	2	2	3	4	-11 J	6
1	2	2	3	5	$-11 J$	6
1	2	3	2	0	-5 J	3
1	2	3	2	1	-5 J	3
1	2	3	2	2	-5 J	3
1	2	3	2	3	-5 J	3
1	2	3	2	4	-5 J	3
1	2	3	3	1	-8 J	3
1	2	3	3	2	-8 J	3
1	2	3	3	3	-8 J	3
1	2	3	3	4	-8 J	3
1	2	3	3	5	-8 J	3
1	2	3	4	2	-12 J	3
1	2	3	4	3	-12 J	3
1	2	3	4	4	-12 J	3
1	2	3	4	5	-12 J	3
1	2	3	4	6	-12 J	3
2	1	0	1	0	-5 J	2
2	1	0	1	1	-5 J	2
2	1	0	1	2	-5 J	2
2	1	1	0	1	-3 J	6
2	1	1	1	0	-4 J	6
2	1	1	1	1	-4 J	6
2	1	1	1	2	-4 J	6
2	1	1	2	1	-6 J	6
2	1	1	2	2	-6 J	6
2	1	1	2	3	-6 J	6
2	1	2	1	0	-2 J	4
2	1	2	1	1	-2 J	4
2	1	2	1	2	-2 J	4
2	1	2	2	1	-4 J	4
2	1	2	2	2	-4 J	4
2	1	2	2	3	-4 J	4
2	1	2	3	2	-7 J	4
2	1	2	3	3	-7 J	4
2	1	2	3	4	-7 J	4
2	1	3	2	1	-J	2
2	1	3	2	2	-J	2
2	1	3	2	3	-J	2
2	1	3	3	2	-4 J	2
2	1	3	3	3	-4 J	2
2	1	3	3	4	-4 J	2
2	1	3	4	3	-8 J	2
2	1	3	4	4	-8 J	2
2	1	3	4	5	-8 J	2

2	2	0	1	1	-7 J	2
2	2	0	1	2	-7 J	2
2	2	0	1	3	-7 J	2
2	2	1	0	2	-5 J	6
2	2	1	1	1	-6 J	6
2	2	1	1	2	-6 J	6
2	2	1	1	3	-6 J	6
2	2	1	2	0	-8 J	6
2	2	1	2	1	-8 J	6
2	2	1	2	2	-8 J	6
2	2	1	2	3	-8 J	6
2	2	1	2	4	-8 J	6
2	2	2	1	1	-4 J	4
2	2	2	1	2	-4 J	4
2	2	2	1	3	-4 J	4
2	2	2	2	0	-6 J	4
2	2	2	2	1	-6 J	4
2	2	2	2	2	-6 J	4
2	2	2	2	3	-6 J	4
2	2	2	2	4	-6 J	4
2	2	2	3	1	-9 J	4
2	2	2	3	2	-9 J	4
2	2	2	3	3	-9 J	4
2	2	2	3	4	-9 J	4
2	2	2	3	5	-9 J	4
2	2	3	2	0	-3 J	2
2	2	3	2	1	-3 J	2
2	2	3	2	2	-3 J	2
2	2	3	2	3	-3 J	2
2	2	3	2	4	-3 J	2
2	2	3	3	1	-6 J	2
2	2	3	3	2	-6 J	2
2	2	3	3	3	-6 J	2
2	2	3	3	4	-6 J	2
2	2	3	3	5	-6 J	2
2	2	3	4	2	-10 J	2
2	2	3	4	3	-10 J	2
2	2	3	4	4	-10 J	2
2	2	3	4	5	-10 J	2
2	2	3	4	6	-10 J	2
2	3	0	1	2	-10 J	2
2	3	0	1	3	-10 J	2
2	3	0	1	4	-10 J	2
2	3	1	0	3	-8 J	6
2	3	1	1	2	-9 J	6
2	3	1	1	3	-9 J	6

2	3	1	1	4	-9 J	6
2	3	1	2	1	-11 J	6
2	3	1	2	2	-11 J	6
2	3	1	2	3	-11 J	6
2	3	1	2	4	-11 J	6
2	3	1	2	5	-11 J	6
2	3	2	1	2	-7 J	4
2	3	2	1	3	-7 J	4
2	3	2	1	4	-7 J	4
2	3	2	2	1	-9 J	4
2	3	2	2	2	-9 J	4
2	3	2	2	3	-9 J	4
2	3	2	2	4	-9 J	4
2	3	2	2	5	-9 J	4
2	3	2	3	0	-12 J	4
2	3	2	3	1	-12 J	4
2	3	2	3	2	-12 J	4
2	3	2	3	3	-12 J	4
2	3	2	3	4	-12 J	4
2	3	2	3	5	-12 J	4
2	3	2	3	6	-12 J	4
2	3	3	2	1	-6 J	2
2	3	3	2	2	-6 J	2
2	3	3	2	3	-6 J	2
2	3	3	2	4	-6 J	2
2	3	3	2	5	-6 J	2
2	3	3	3	0	-9 J	2
2	3	3	3	1	-9 J	2
2	3	3	3	2	-9 J	2
2	3	3	3	3	-9 J	2
2	3	3	3	4	-9 J	2
2	3	3	3	5	-9 J	2
2	3	3	3	6	-9 J	2
2	3	3	4	1	-13 J	2
2	3	3	4	2	-13 J	2
2	3	3	4	3	-13 J	2
2	3	3	4	4	-13 J	2
2	3	3	4	5	-13 J	2
2	3	3	4	6	-13 J	2
2	3	3	4	7	-13 J	2
3	2	0	1	1	-4 J	1
3	2	0	1	2	-4 J	1
3	2	0	1	3	-4 J	1
3	2	1	0	2	-2 J	3
3	2	1	1	1	-3 J	3
3	2	1	1	2	-3 J	3

3	2	1	1	3	-3 J	3
3	2	1	2	0	-5 J	3
3	2	1	2	1	-5 J	3
3	2	1	2	2	-5 J	3
3	2	1	2	3	-5 J	3
3	2	1	2	4	-5 J	3
3	2	2	1	1	-J	2
3	2	2	1	2	-J	2
3	2	2	1	3	-J	2
3	2	2	2	0	-3 J	2
3	2	2	2	1	-3 J	2
3	2	2	2	2	-3 J	2
3	2	2	2	3	-3 J	2
3	2	2	2	4	-3 J	2
3	2	2	3	1	-6 J	2
3	2	2	3	2	-6 J	2
3	2	2	3	3	-6 J	2
3	2	2	3	4	-6 J	2
3	2	2	3	5	$-6 \mathrm{~J}$	2
3	2	3	2	0	$6 j_{\text {eff }}$	1
3	2	3	2	1	$5 j_{\text {eff }}$	1
3	2	3	2	2	$3 j_{\text {eff }}$	1
3	2	3	2	3	0	1
3	2	3	2	4	$-4 j_{\text {eff }}$	1
3	2	3	3	1	-3 J	1
3	2	3	3	2	-3 J	1
3	2	3	3	3	-3 J	1
3	2	3	3	4	-3 J	1
3	2	3	3	5	-3 J	1
3	2	3	4	2	-7 J	1
3	2	3	4	3	-7 J	1
3	2	3	4	4	-7 J	1
3	2	3	4	5	-7 J	1
3	2	3	4	6	-7 J	1
3	3	0	1	2	-7 J	1
3	3	0	1	3	-7 J	1
3	3	0	1	4	-7 J	1
3	3	1	0	3	-5 J	3
3	3	1	1	2	-6 J	3
3	3	1	1	3	-6 J	3
3	3	1	1	4	-6 J	3
3	3	1	2	1	-8 J	3
3	3	1	2	2	-8 J	3
3	3	1	2	3	-8 J	3
3	3	1	2	4	-8 J	3
3	3	1	2	5	-8 J	3

3	3	2	1	2	-4 J	2
3	3	2	1	3	-4 J	2
3	3	2	1	4	-4 J	2
3	3	2	2	1	-6 J	2
3	3	2	2	2	-6 J	2
3	3	2	2	3	-6 J	2
3	3	2	2	4	-6 J	2
3	3	2	2	5	-6 J	2
3	3	2	3	0	-9 J	2
3	3	2	3	1	-9 J	2
3	3	2	3	2	-9 J	2
3	3	2	3	3	-9 J	2
3	3	2	3	4	-9 J	2
3	3	2	3	5	-9 J	2
3	3	2	3	6	-9 J	2
3	3	3	2	1	-3 J	1
3	3	3	2	2	-3 J	1
3	3	3	2	3	-3 J	1
3	3	3	2	4	-3 J	1
3	3	3	2	5	-3 J	1
3	3	3	3	0	-6 J	1
3	3	3	3	1	-6 J	1
3	3	3	3	2	-6 J	1
3	3	3	3	3	-6 J	1
3	3	3	3	4	-6 J	1
3	3	3	3	5	-6 J	1
3	3	3	3	6	-6 J	1
3	3	3	4	1	-10 J	1
3	3	3	4	2	-10 J	1
3	3	3	4	3	-10 J	1
3	3	3	4	4	$-10 \mathrm{~J}$	1
3	3	3	4	5	-10 J	1
3	3	3	4	6	-10 J	1
3	3	3	4	7	-10 J	1
3	4	0	1	3	-11 J	1
3	4	0	1	4	-11 J	1
3	4	0	1	5	$-11 \mathrm{~J}$	1
3	4	1	0	4	-9 J	3
3	4	1	1	3	-10 J	3
3	4	1	1	4	-10 J	3
3	4	1	1	5	-10 J	3
3	4	1	2	2	-12 J	3
3	4	1	2	3	-12 J	3
3	4	1	2	4	-12 J	3
3	4	1	2	5	-12 J	3
3	4	1	2	6	-12 J	3

3	4	2	1	3	-8 J	2
3	4	2	1	4	-8 J	2
3	4	2	1	5	-8 J	2
3	4	2	2	2	$-10 \mathrm{~J}$	2
3	4	2	2	3	-10 J	2
3	4	2	2	4	-10 J	2
3	4	2	2	5	-10 J	2
3	4	2	2	6	-10 J	2
3	4	2	3	1	-13 J	2
3	4	2	3	2	-13 J	2
3	4	2	3	3	-13 J	2
3	4	2	3	4	-13 J	2
3	4	2	3	5	-13 J	2
3	4	2	3	6	-13 J	2
3	4	2	3	7	-13 J	2
3	4	3	2	2	-7 J	1
3	4	3	2	3	-7 J	1
3	4	3	2	4	-7 J	1
3	4	3	2	5	-7 J	1
3	4	3	2	6	-7 J	1
3	4	3	3	1	-10 J	1
3	4	3	3	2	-10 J	1
3	4	3	3	3	-10 J	1
3	4	3	3	4	-10 J	1
3	4	3	3	5	-10 J	1
3	4	3	3	6	-10 J	1
3	4	3	3	7	-10 J	1
3	4	3	4	0	-14 J	1
3	4	3	4	1	-14 J	1
3	4	3	4	2	-14 J	1
3	4	3	4	3	-14 J	1
3	4	3	4	4	-14 J	1
3	4	3	4	5	-14 J	1
3	4	3	4	6	-14 J	1
3	4	3	4	7	-14 J	1
3	4	3	4	8	-14 J	1

${ }^{a} S$ are the spin values of the $\mathrm{Ni}^{\mathrm{II}}{ }_{8}$ entity, S_{A} and S_{B} are the spin values of each $\mathrm{Ni}^{\mathrm{II}}{ }_{4}$ star unit, and $S^{*}{ }_{\mathrm{A}}$ and $S^{*}{ }_{\mathrm{B}}$ are the intermediate spin values corresponding to the coupling of the three peripheral high-spin $\mathrm{Ni}^{\mathrm{II}}$ ions of each $\mathrm{Ni}^{\mathrm{II}}{ }_{4}$ star unit. ${ }^{b} E$ and n are the spin state energy and the number of degenerated spin states. ${ }^{c} J$ and $j_{\text {eff }}$ are the intratetramer and effective intertetramer coupling parameters as defined in eq S 1 [with $S_{1 \mathrm{~A}}=S_{3 \mathrm{~A}}=S_{4 \mathrm{~A}}=S_{5 \mathrm{~A}}=S_{2 \mathrm{~B}}=S_{6 \mathrm{~B}}=S_{7 \mathrm{~B}}=S_{8 \mathrm{~B}}=S_{\mathrm{Ni}}=1$, and S_{A} $\left.=S_{\mathrm{B}}=2\right]$.

