Supporting Information for:

Chemical Switching Behaviour of Tricarbonylrhenium(I) Complexes of a New Redox Active 'Pincer' Ligand.

Sarath Wanniarachchi,^{*a*} Brendan J. Liddle^{*a*} John Toussaint,^{*a*} Sergey V. Lindeman,^{*a*} Brian Bennett^{*b*} and James R. Gardinier^{*a}

Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881.

^bDepartment of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA 53226.

Table of Contents:

[1]	Experimental. General Considerations.	S-4
	Synthesis of HL.	S-5
	Synthesis of ReBr(CO) ₃ [H(L)], 1.	S-6
	Synthesis of $\{\text{Re}(\text{CO})_3[\text{H}(\text{L})](\text{PF}_6), 2 \cdot \text{PF}_6.$	S-7
	Synthesis of {Re(CO) ₃ [H(L)](OSO ₂ CF ₃), 2·OTf.	S-7
	Synthesis of $Re(CO)_3L$, 3.	S-8
	Acid-Base Cycling Experiments of Re(CO) ₃ L, 3.	S-9
	Oxidation of $Re(CO)_3L$, 3.	S-10

[2]	Crystallography. General Considerations.	S-11
	Table S-1. Crystallographic Data Collection and Structure Refinement.	S-13
	Figure S-1. Molecular Structures and Atom Labeling.	S-14
	Table S-2. Selected Bond Distances and Interatomic Angles.	S-15

[3] Spectroscopic and Electrochemical Characterization. Figure S-3. Overlay of IR spectra of 1-3 as KBr pellets and in CH₂Cl₂. S-16 Figure S-4. Cyclic Voltammograms of 1-3 and Scan Rate Dependence of 3. S-16

Figure S-5. Overlay of UV-Vis spectrum of 1 and 2 in CH ₂ Cl ₂ .	S-17
Figure S-6. ESI(+) mass spectrum of 1 (CH ₃ CN).	S-17
Figure S-7. ESI(+) mass spectrum of $2 \cdot PF_6$ (CH ₃ CN).	S-18
Figure S-8. Direct Probe (EI) mass spectrum of 3 (CH ₃ CN).	S-18
Figure S-9. ¹ H NMR Spectrum (400 MHz) of 1 in CD_2Cl_2 .	S-19
Figure S-10. DQCOSY NMR spectrum of 1 in CD_2Cl_2 .	S-19
Figure S-11. Variable Temp. ¹ H NMR spectrum of 1 in CD_2Cl_2 and in $C_2D_2Cl_4$	S-20
Figure S-12. Plots of relative composition of species in solutions of 1 as a function of temperature	S-21
Figure S-13. Variable Temp. ¹ H NMR spectrum of $2 \cdot PF_6$ and $2 \cdot OTf$ in CD ₂ Cl ₂ .	S-21
Figure S-14. Variable Temp. ¹ H NMR spectrum of 3 in CD_2Cl_2 .	S-22
Table S-3. ¹ H NMR Chemical Shift data assignments	S-22
Discussion of the NMR and other spectroscopic data for 1-3.	S-23
Scheme S-1. Different low-energy (MMFF) geometric and coordination isomers	
of $\text{ReBr}(\text{CO})_3[\mathbf{H}(\mathbf{L})]$.	S-23
Figure S-15. Spectrophotometric Titraton of 3.	S-25
Computational Details.	S-26
Figure S-16. Overlay of the Calculated and Experimental Structures of 3 and 3^+ .	S-27
Table S-4. Cartesian coordinates for BP86/6-31G* minimized structure of 1.	S-28
Table S-5. Cartesian coordinates for BP86/6-31G* minimized structure of 2^+ .	S-29
Table S-6. Cartesian coordinates for BP86/6-31G* minimized structure of 3.	S-30
Table S-7. Cartesian coordinates for BP86/6-31G* minimized structure of 3^+ .	S-31
Table S-8. Calculated SCF and Frontier Orbital Energies (eV) for 1, 2, 3, and 3 ⁺ .	S-32
Figure S-17. Frontier Orbitals for 1 from DFT calculations (B3LYP/LACVP*).	S-33

[4]

Figure S-18. Frontier Orbitals for 2.	S-34
Figure S-19. Frontier Orbitals for 3.	S-35
Figure S-20. Alpha-Spin Frontier Orbitals for 3^+ .	S-36
Figure S-21. Beta-Spin Frontier Orbitals for 3^+ .	S-37
Figure S-22. Simulated Electronic Absorption Spectra of 1 , 2 , 3 and 3 ⁺ .	S-38
TDDFT/TDA Excitation Energies and Allied Data for $1, 2, 3$ and 3^+ .	S-39

[5] *References.*

S-43

Experimental Section

General Considerations. The compounds pyrazole, CuI, N,N'-dimethylethylenediamine (DMED), anhydrous K_2CO_3 powder, $Tl(X = PF_6 \text{ or } OTf)$ and (NEt₄)(OH) (1M in MeOH) were purchased from commercial sources and used without further purification while Re(CO)₅Br,^{S1} di(2-bromo-4-tolyl)amine,^{S2} were prepared by literature methods. The solvents used in the preparations were dried by conventional methods and distilled prior to use. Midwest MicroLab, LLC, Indianapolis, Indiana 45250, performed all elemental analyses. IR spectra were recorded in the 4000-500 cm⁻¹ region (as KBr pellets or as CH₂Cl₂ solutions in a cell with KBr windows) on a Nicolet Magna-IR 560 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts were referenced to solvent resonances at δ_H 7.27, δ_C 77.23 for CDCl₃; δ_H 5.33, δ_C 54.00 for CDCl₃; δ_H 1.94, δ_C 118.9 for CD₃CN and δ_H 2.05, δ_C 29.92 for acetone-d₆. Melting point determinations were made on samples contained in glass capillaries using an Electrothermal 9100 apparatus and are uncorrected. Absorption measurements were recorded on an Agilent 8453 spectrometer. Electrochemical measurements were collected under nitrogen atmosphere at a scan rate of 100 mV/s for samples as 0.1 mM CH₂Cl₂ solutions with 0.1 M NBu₄PF₆ as the supporting electrolyte. A three-electrode cell comprised of an Ag/AgCl electrode (separated from the reaction medium with a semipermeable polymer membrane filter), a platinum working electrode, and a glassy carbon counter electrode was used for the voltammetric measurements. With this set up, the ferrocene/ferrocenium couple had an $E_{1/2}$ value of +0.53 V consistent with the literature value in this solvent.^{S3} Mass spectrometric measurements recorded in ESI(+) or ESI(-) mode were obtained on a Micromass Q-TOF spectrometer whereas that performed by using direct-probe analyses were made on a VG 70S instrument. For the ESI(+) experiments, formic acid (approximately 0.1 % v/v) was added to the mobile phase (CH₃CN). EPR measurements were obtained using a Bruker ELEXSYS E600 equipped with an ER4116DM cavity resonating at 9.63 GHz, an Oxford Instruments ITC503 temperature controller and ESR-900 helium-flow cryostat. The ESR spectra were recorded with 100kHz field modulation.

Syntheses.

Di(2-(pyrazolyl)-4-tolyl)amine, H(L). A mixture of 10.82 g (0.030 mol) di(2-bromo-ptolyl)amine, 7.25 g (0.107mol, 3.5 equiv) pyrazole, 14.72 g (0.107mmol, 3.5 equiv) K₂CO₃, 1.2 mL (0.012 mol, 40 mol %) DMED, and 10 mL of distilled xylenes was purged with nitrogen 15 min. Then, 0.58 g (3 mmol, 10 mol %) CuI was added as a solid under nitrogen and the mixture was heated at reflux for 36 h under nitrogen. After cooling to room temperature, 200 mL of H₂O was added and the mixture was extracted with three 100 mL portions of CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered, and solvent was removed by rotary evaporation to give an oily residue that was purified by column chromatography on silica gel. Elution using 10:1 hexanes: ethyl acetate ($R_f = 0.5$) afforded 6.90 g (69 %) of H(L) as a white powder, after removing solvent and drying under vacuum. Mp, 89 - 90 °C. Anal. Calcd (obs.) for $C_{20}H_{19}N_5$: C, 72.93 (73.05); H, 5.81 (5.97); N, 21.26 (20.88). ¹H NMR: (CD₂Cl₂) 8.48 (s, 1H, NH), 7.72 $(dd, J = 2, 0.6 Hz, 2H, H_3pz), 7.67 (dd, J = 2, 0.6 Hz, 2H, H_5pz), 7.25 (d, J = 8 Hz, 2H, Ar), 7.12$ (s, 2H, Ar), 7.03 (d, J = 8 Hz, 2H, Ar), 6.43(dd, J = 2, 0.6 Hz, 2H, H₄pz), 2.30 (s, 6H, ArCH₃). ¹H NMR (acetone-d₆) : 8.72 (s, 1H, NH), 7.94 (dd, J = 2, 0.6 Hz, 2H, H₃pz), 7.81 (dd, J = 2, 0.6 Hz, 2H, H₅pz), 7.36 (d, *J* = 8 Hz, 2H, Ar), 7.29 (d, *J* = 2 Hz, 2H, Ar), 7.19 (dd, *J* = 8, 2 Hz, 2H, Ar), 6.57 (dd, J = 2, 0.6 Hz, 2H, H₄pz), 2.41 (s, 6H, ArCH₃). ¹³C NMR: (CDCl₃) 140.5, 134.7, 130.7, 130.2, 130.1, 129.0, 125.8, 118.9, 106.7, 20.6. UV-VIS λ_{max} , nm (ϵ , M⁻¹cm⁻¹), CH₂Cl₂: 238 (31,600), 303 (22,700). LRMS (Direct Probe) m/z (Int.) [assign.]: 329 (100) [HL]⁺, 262 (8)

 $[HL-Hpz]^+$, 173 (15) $[H_2L-pztolyl]^+$. Single crystals suitable for X-ray diffraction were obtained by slow cooling a hot hexanes solution (supersaturated) to room temperature over the course of a few hours.

fac-ReBr(CO)₃[H(L)], 1. A mixture of 0.510 g (1.27 mmol) Re(CO)₅Br and 0.455g (1.38 mmol) of H(L) in 20 mL toluene was heated at reflux 15 h. The resulting precipitate was isolated by filtration, washed with two 5 mL portions Et₂O and dried under vacuum which afforded 0.71 g (83 %) of 1 as a colorless solid. Mp. 272 - 274°C dec. Anal. Calcd (obs.) for C₂₃H₁₉BrN₅O₃Re: C, 40.65 (40.33); H, 2.82 (2.67); N, 10.31 (10.02). IR (KBr) v_{co} 2020, 1920, 1880 cm⁻¹. IR (CH₂Cl₂) v_{co} major bands; 2029, 1919, 1896, minor bands; 2038, 1930 cm⁻¹. ¹H NMR: (CD₂Cl₂, 293K): (three species, see text: I, 48% of signal integration intensity from wellresolved resonances in the ArCH₃, NH, and H₄pz regions of the spectrum; II, 42% of signal; III 10 % of signal): 11.92 (s, 1H, NH, II), 11.40 (s, 1H, NH, III), 9.89 (s, 1H, NH, I), 8.22 (d, J = 3Hz, 1H, H₅pz, III), 8.18 (d, J = 3 Hz, 1H, H₅pz, I), 8.17 (d, J = 2 Hz, 1H, H₃pz, I), 8.13 (d, J = 2Hz, 1H, H₃pz, III), 8.01 (d, J = 3 Hz, 1H, H₅pz, III), 7.92 (d, J = 2 Hz, 2H, H₃pz, II), 7.91(d, J = 33 Hz, 3H, H₅pz, I and II), 7.90 (d, J = 2 Hz, 1H, H₃pz, III), 7.88 (d, J = 3 Hz, 1H, H₅pz, I), 7.59-7.54 (m, Ar, 2H, I/II/III), 7.48 (s, 1H, Ar, III), 7.36-7.31 (m, Ar, 3H, I/II/III and H₅pz, I), 7.30 (s, 1H, Ar, III), 7.23-7.08 (m, 2.5H, Ar I/II/III), 6.86 (d, J = 8 Hz, 1H, Ar, III), 6.77 (dd, J = 3, 2 Hz, 1H, H₄pz, I), 6.76 (dd, J = 3, 2 Hz, 1H, H₄pz, III), 6.61 (dd, J = 3, 2 Hz, 1H, H₄pz, III), 6.51 (dd, J = 3, 2 Hz, 2H, H₄pz, II), 6.41 (dd, J = 3, 2 Hz, 1H, H₄pz, I), 5.94 (d, J = 8 Hz, 1H, Ar, III), 2.51 (s, 3H, ArCH₃, III), 2.47 (s, 3H, ArCH₃, I), 2.44 (s, 3H, ArCH₃, I), 2.37 (s, 6H, ArCH₃, II), 2.32 (s, 3H, ArCH₃, III). ¹³C NMR: (CD₂Cl₂, 293K) major asymmetric species I: 148.00, 141.34, 139.05, 137.68, 135.23, 133.52, 132.09, 128.34, 124.69, 122.81, 119.92, 110.5, 108.37, 21.31, 20.93; symmetric species II: 148.85, 139.13, 136.45, 132.97, 130.57, 124.78,

124.24, 110.06, 20.98; minor asymmetric species **III**: 148.89, 142.41, 140.10, 136.93, 136.76, 135.07, 134.99, 131.72, 131.27, 131.06, 130.27, 128.39, 124.74, 124.15, 122.87, 110.53, 108.40, 21.26, 20.91. UV-VIS λ_{max} , nm (ϵ , M⁻¹cm⁻¹), CD₂Cl₂: 230 (49,300), 251 (32,300), 287 (11,100). LRMS ESI(+) m/z (Int.) [assign.]: 743 (4) [ReBr(CO)₃(HL)+Na(CH₃CN)]⁺, 721 (6) [ReBr(CO)₃(H₂L)+ CH₃CN]⁺, 718 (7) [ReBr(CO)₃(HL)+K]⁺, 702 (5) [ReBr(CO)₃(HL)+Na]⁺, 641 (1) [Re(CO)₃(H₂L)+CH₃CN]⁺, 600 (100) [Re(CO)₃(HL)]⁺, 330 (31) [H₂L]⁺. X-ray quality crystals were grown by layering an acetone solution with hexane and allowing the solvents to slowly diffuse over two days.

{**Re**(**CO**)₃[**H**(**L**)]}(**PF**₆), 2·**PF**₆. A mixture of 0.208 g (0.306 mmol) of **1** and 0.107 g (0.306 mmol) TIPF₆ in 20 mL dry CH₃CN was heated at reflux for 15 h. After cooling to room temperature, TIBr was removed by filtration through Celite, and solvent was removed from the filtrate by rotary evaporation. The residue was washed with two 5 mL portions of Et₂O and was dried under vacuum to give 0.184 g (80 %) of **2·PF**₆ as a white powder. Mp, 255 – 258 °C dec. Anal. Calcd (obs.) for C₂₃H₁₉F₆N₅O₃PRe: C, 37.10 (36.99); H, 2.57 (2.32); N, 9.41 (9.16). IR (KBr) ν_{co} 2040, 1950, 1930 cm⁻¹. ¹H NMR: (CD₂Cl₂, 293K) 7.95 (d, *J* = 2 Hz, 2H, H₃pz), 7.91 (d, *J* = 3 Hz, 2H, H₅pz), 7.74 (s, 1H, NH), 7.24-7.16 (m, 4H, Ar), 6.58 (dd, *J* = 3, 2 Hz, 2H, H₄pz), 2.41 (s, 6H, ArCH₃). ¹³C NMR: suitable spectrum of a concentrated solution could not be obtained even after 24 hours acquisition time. UV-VIS λ_{max}, nm (ε, M⁻¹cm⁻¹), CD₂Cl₂: 230 (42,500), 245 (34,800), 367 (1,750). LRMS ESI(+) m/z (Int.) [assign.]: 600 (100) [(HL)Re(CO)₃]⁺. X-ray quality crystals were grown by layering a dichloromethane solution with hexane and allowing the solvents to slowly diffuse over two days.

{Re(CO)₃[H(L)]}(OTf), 2·OTf. A mixture of 0.175 g (0.258 mmol) of 1 and 0.091 g (0.26 mmol) TIOTf in 20 mL dry CH₃CN was heated at reflux for 15 h. After cooling to room

temperature, TlBr was removed by filtration through Celite, and solvent was removed from the filtrate by rotary evaporation. The residue was washed with two 5 mL portions of Et₂O and was dried under vacuum to give 0.173 g (90 % based on **1**) of **2·OTf** as a white powder. Mp, 275 - 277°C dec. Anal. Calcd (obs.) for C₂₄H₁₉F₃N₅O₆ReS: C, 38.50 (38.78); H, 2.56 (2.72); N, 9.35 (8.99). IR (CH₂Cl₂) v_{co} 2040, 1938, 1922 cm⁻¹. IR (KBr) v_{co} 2036, 1947, 1922 cm⁻¹. ¹H NMR: (CD₂Cl₂, 293K) 9.79 (s, 1H, NH), 7.93 (d, J = 2 Hz, 2H, H₃pz), 7.89 (d, J = 3 Hz, 2H, H₅pz), 7.25-7.15 (m, 6H, Ar), 6.55 (dd, J = 3, 2 Hz, 2H, H₄pz), 2.39 (s, 6H, ArCH₃). ¹³C NMR: (CD₂Cl₂, 293K) 193.5, 191.3, 148.1, 139.5, 135.9, 133.2, 132.2, 130.7, 125.0, 123.9, 110.1, 21.0. UV-VIS λ_{max} , nm (ϵ , M⁻¹cm⁻¹), CD₂Cl₂: 230 (43,000), 245 (34,000), 367 (1,700). LRMS ESI(+) m/z (Int.) [assign.]: 600 (100) [(HL)Re(CO)₃]⁺. X-ray quality crystals were grown by layering a dichloromethane solution with hexane and allowing the solvents to slowly diffuse over two days.

Re(CO)₃(L), **3**. To a solution of 0.105 g (0.15mmol) **1** in 20 mL of CH₃CN was added 1.50 mL of a 0.103 M (NEt₄)(OH) solution in MeOH (0.155 mmol), immediately giving a yellow solution. The mixture was stirred for 15 min then solvent was removed by rotary evaporation. The residue was washed with two 5 mL portions Et₂O, and the yellow product was extracted with three 10 mL portions of benzene. Benzene was removed by vacuum distillation to afford 0.060 g (67 %) of **3** as a yellow powder. Mp. 295-298°C dec. Anal. Calcd (obs.) for C₂₃H₁₈N₅O₃Re: C, 46.15 (45.89); H, 3.03 (3.11); N, 11.70 (11.58). IR (CH₂Cl₂) v_{co} 2015, 1905, 1885 cm⁻¹. IR (KBr) v_{co} 2013, 1901, 1876 cm⁻¹. ¹H NMR: (CD₂Cl₂, 293 K) 7.95 (d, *J* = 2 Hz, 2H, H₃pz), 7.92 (d, *J* = 3 Hz, 2H, H₅pz), 7.82 (part of AA'BB', 2H, Ar), 7.12 (part of AA'BB', 2H, Ar), 7.11 (s, 2H, Ar), 6.52 (dd, *J* = 3, 2 Hz, 2H, H₄pz), 2.36 (s, 6H, ArCH₃). ¹H NMR: (acetone-d₆) 8.35 (dd, *J* = 2, 1 Hz, 2H, H₃pz), 8.30 (dd, *J* = 2, 1 Hz, 2H, H₅pz), 7.84 (part of AB d, *J* = 8 Hz, 2H), 7.29 (d, *J* = 2, Hz, 2H, Ar), 7.11 (part of AB d, *J* = 9, 2 Hz, 2H, Ar), 6.65 (dd, *J*

= 2, 1 Hz, 2H, H₄pz), 2.31 (s, 6H, ArCH₃). ¹³C NMR: (CD₂Cl₂) 196.8, 146.6, 142.9, 130.9, 130.3, 129.0, 128.0, 123.9, 119.4, 108.0, 20.7. HRMS [Direct Probe, m/z] Calc. (Obs) for $C_{23}H_{18}N_5O_3Re$: 599.0968 (599.0973). LRMS (Direct Probe) m/z (Int.) [assign.]: 599 (30) [LRe(CO)₃]⁺, 515 (58) [LRe – 3 CO + H]⁺, 329 (28) [H₂L]⁺, 173 (100) [H₂L–pztolyl]⁺, 105 (47) [H₂Ntolyl]⁺. UV-VIS λ_{max} , nm (ε, M⁻¹cm⁻¹), CD₂Cl₂: 229 (40,200), 239 (37,900), 309 (10,600), 353 (8,500), 390 (6,400) . X-ray quality crystals were grown by layering an acetone solution with hexane and allowing the solvents to slowly diffuse over two days.

Acid/base cycling experiments.

UV-Vis spectroscopic experiments. In a typical UV-Vis spectroscopic acid/base cycling experiment, 10 μ L aliquots of 1.904 mM acid (HBF₄ or CF₃COOH) in CH₂Cl₂ solution were sequentially added to 3.0 mL of a 0.0635 mM ReLCO₃ solution in CH₂Cl₂ where the disappearance of the band at 450 nm was monitored. After one equivalent of acid was added, 10 μ L aliquots of 1.904 mM (NEt₄)(OH) solution in dichloromethane were added to the resultant solution. This acid/base cycle was repeated three more times.

Electrochemical experiments. In a representative acid/base cycling experiment monitored by cyclic voltammetry, a solution of 0.0100 g (0.0167 mmol) of Re(CO)₃(**L**) (**3**) and 0.300 g (1.23 mmol) NBu₄PF₆ in 15 mL dry CH₂Cl₂ was treated with 10 μ L aliquots of 0.1670 <u>M</u> tetrafluoroboric acid in CH₂Cl₂ where the cyclic voltommogram was recorded between 0.0 to +1.0 V versus Ag/AgCl (the potential values in the main text were calibrated to an external Fc/Fc⁺ couple +0.53 V versus Ag/AgCl in CH₂Cl₂) at a scan rate of 100 mV/s after each addition. After the wave centered near +0.53 V versus Ag/AgCl, indicative of **3**, approached a constant near zero baseline current value (after approximately one equivalent of acid added), 10

 μ L aliquots of 0.1670 <u>M</u> (NEt₄)(OH) in CH₂Cl₂ were added. The voltammograms recorded after each successive base addition, as above. This acid/base cycling process was repeated three more times.

Chemical Oxidation of 3.

Spectrophotometric Titrations. Standard solutions the cation radical 9,10-dimethoxyoctahydro-1,4:5,8-dimethanoanthracenium hexachloroantimonate, (CRET⁺)(SbCl₆⁻),^{S4} were prepared by dissolving the cation radical in freshly distilled CH₂Cl₂ and diluting until the absorbance measured at 517 nm was about 1.0, corresponding to a concentration of 1.37×10^{-4} M (ϵ 7,300). For the titrations, 3 mL of this standard solution were used and the spectrum was acquired before and after the addition 10 µL aliquots of 0.00548 M solutions of **3**.

Synthetic Scale. A solution of 0.054g (89 μ mol) of (CRET⁺)(SbCl₆⁻) in 15 mL dry, distilled CH₂Cl₂ and the resultant solution was transferred under nitrogen by cannula to a magnetically stirred solution of 0.053 g (89 μ mol) **3** in 15 mL CH₂Cl₂. The resultant royal blue solution was stirred 10 min and solvent was removed under vacuum. The blue solid was washed with two 5 mL portions of pentane and then dried under vacuum to give 0.053 g (64 %) of (**3**⁺)(SbCl₆⁻) as a blue solid.

Alternatively, a solution of 0.115 g (0.448 mmol) AgOTf in 10 mL CH₂Cl₂ was added to a solution of 0.268 g (0.447 mmol) **3** in 10 mL CH₂Cl₂. After the resulting blue-black mixture had been stirred 1 h, the blue solution was separated from silver metal by filtration. Solvent was removed by vacuum distillation and the blue residue was washed with two 5 mL portions of hexane to leave 0.244 g (73% based on Re) of (**3**⁺)(**OTf**) as a blue solid. IR (CH₂Cl₂) v_{co} 2035,

1932, 1925 cm⁻¹. IR (KBr) ν_{co} 2031, 1941 cm⁻¹. UV-VIS λ_{max} , nm (ϵ , M⁻¹cm⁻¹), CD₂Cl₂: 488 (1,000), 618 (2,680), 748 (3,600), 892sh (900), 1046sh (460).

Crystallography.

X-ray intensity data from a colorless block of H(L), a colorless plate of $\text{ReBr}(\text{CO})_3[H(L)]$ (1), a colorless prism of ${Re(CO)_{3}[H(L)]}(PF_{6}),$ $(2 \cdot PF_6),$ а colorless prism of ${Re(CO)_3[H(L)]}(OTf)$, (2·OTf), and a yellow block of $Re(CO)_3(L)$, (3) were measured at 100(2) K with a Bruker AXS 3-circle diffractometer equipped with a SMART2^{S5} CCD detector using Cu(Ka) radiation. Raw data frame integration and Lp corrections were performed with SAINT+.^{S6} Final unit cell parameters were determined by least-squares refinement of 7538, 6621, 8198, 9905, and 7176 reflections from the data sets of H(L), 1, 2 · PF₆, 2 · OTf, and 3, respectively, with $I > 2\sigma(I)$ for each. Analysis of the data showed negligible crystal decay during collection in each case. Direct methods structure solutions, difference Fourier calculations and full-matrix least-squares refinements against F² were performed with SHELXTL.^{S7} Semiempirical absorption correction based on the multiple measurement of equivalent reflections was applied to the data of H(L) with SADABS.^{S6} An empirical absorption correction of areadetector data for twinned (2:1 component ratio separated by ca 2 degree split) crystals and of 1 was applied with TWINABS.^{S6} Numerical absorption corrections based on the real shape of the crystals for the remainder of the compounds were applied with SADABS.^{S6} All non-hydrogen atoms were refined with anisotropic displacement parameters with the following exception. Two alternative positions of PF_6^- anion were found in $2 \cdot PF_6$ from a series of difference Fourier syntheses and were refined with soft geometric restraints (using the SAME instruction in SHELXL). Their relative population was refined to 27/73. The fluorines of the minor disorder component were refined isotropically. The secondary amino nitrogens in H(L) and in 2·X (X =

 PF_6 , OTf) were located and refined whereas the remaining hydrogen atoms in all complexes were placed in geometrically idealized positions and included as riding atoms. The X-ray crystallographic parameters and further details of data collection and structure refinements are presented in Table S-1. Selected bond distances and interatomic angles are found in Table S-2 while the remaining distances and angles can be found in the cif files deposited with the CSD.^{S8}

Compound	H(L)	1	$2 \cdot PF_6$	2·OTf	3
Formula	C ₂₀ H ₁₉ N ₅	C23H19BrN5O3Re	$C_{23}H_{19}F_6N_5O_3PRe$	$C_{24}H_{19}F_3N_5O_6ReS$	C ₂₃ H ₁₈ N ₅ O ₃ Re
Formula weight	329.40	679.54	744.60	748.70	598.62
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	P n	P 2 ₁ /c	$P 2_1/c$	$P 2_1/n$	C 2/c
a, Å	7.3364(2)	8.1846(4)	15.6722(7)	8.1784(2)	24.5632(5)
b, Å	16.5933(4)	31.9302(14)	9.6375(4)	18.4766(4)	11.8412(3)
c, Å	14.1016(3)	8.9168(5)	16.8562(7)	17.1772(4)	15.4073(3)
α, deg	90	90	90	90	90
β, deg	98.6740(10)	102.901(3)	103.315(2)	90.9260(10)	110.1570(10)
γ, deg	90	90	90	90	90
V, Å ³	1697.03(7)	2271.5(2)	2477.53(18)	2595.29(10)	4206.86(16)
Z	4	4	4	4	8
Т, К	100(2)	100(2)	100(2)	100(2)	100(2)
ρ calcd, Mg $m^{\text{-}3}$	1.289	1.987	1.996	1.916	1.890
λ(Cu Kα), Å	1.54178	1.54178	1.54178	1.54178	1.54178
μ, mm ⁻¹	0.631	12.830	10.967	10.561	11.611
Abs. Correction	multi-scan	multi-scan	numerical	numerical	numerical
F(000)	696	1304	1440	1456	2320
θ range [°]	2.66 to 66.41	2.77 to 67.93	2.90 to 67.71	3.51to 67.78	3.83 to 67.85
Reflns collected	13695	35582	20721	21636	17421
Indep. reflns	2889 (R _{int} 0.0242)	4046(R _{int} 0.1068)	4328(R _{int} 0.0372)	4638(R _{int} 0.0197)	3759(R _{int} 0.0199)
T_min/max	0.7865/0.9513	0.2060/0.6279	0.3627/0.6744	0.1306/0.4336	0.1143/0.2748
Data/restraints/ parameters	2889/2/464	4046/0/300	4328/21/392	4638/0/367	3759/0/292
Goodness-of-fit on F^2	0.985	1.042	1.009	1.022	1.002
R[I>2 σ (I)] ^c (all data)	0.0282 (0.0292)	0.0438 (0.0467)	0.0267 (0.0321)	0.0196 (0.0205)	0.0172 (0.0173)
wR ^d (all data)	0.0731 (0.0738)	0.1059 (0.1073)	0.0657 (0.0678)	0.0509 (0.0514)	0.0489 (0.0490)
$\mathbf{R} = \Sigma F_{o} - F_{c} / \Sigma F_{o} . {}^{d}w\mathbf{R} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{2} ^{2}]^{1/2}$					

Table S-1. Crystallographic Data and Refinement Parameters for H(L), ReBr(CO)₃[H(L)] (1),{Re(CO)₃[H(L)]}(X) (X = PF₆, **2·PF₆**; X = OTf, **2·OTf**), and Re(CO)₃(L), (3).

Figure S-1. Structure Diagrams with Atom Labeling of $\text{ReBr}(\text{CO})_3[\mathbf{H}(\mathbf{L})]$ (1), { $\text{Re}(\text{CO})_3[\mathbf{H}(\mathbf{L})]$ }(PF_6) (2·PF₆) { $\text{Re}(\text{CO})_3[\mathbf{H}(\mathbf{L})]$ }(OTf) (2·OTf), and $\text{Re}(\text{CO})_3(\mathbf{L})$, (3).

C13

C12

(2·OTf)

Č6

C43

(01 C41

(3)

C42

02 🧭

C5

Distance (Å)	1	2 · PF ₆	2·OTf	3
Re-Br	2.619			
Re-N1	2.265	2.257	2.249	2.163
Re-N11	2.182	2.174	2.169	2.173
Re-N21		2.180	2.174	2.148
Re-C41	1.899	1.915	1.910	1.914
Re-C42	1.928	1.944	1.936	1.923
Re-C43	1.946	1.933	1.933	1.948
C41-O1	1.164	1.149	1.150	1.158
C42-O2	1.142	1.129	1.144	1.147
C43-O3	1.091	1.140	1.139	1.138
N1H1•••N21(or O4)	1.913		2.014	
$\perp N1 \cdots (C_2 Re)^a$	0.383	0.492	0.488	0.191
Angles/torsions (°)				
N1-Re-N11	77.15	77.75	76.61	79.26
N1-Re-N21		83.68	83.76	81.57
Fold (N11) ^b	138.81	130.62	123.45	136.17
Fold (N21) ^c		159.24	154.62	147.36
ReN11-N12C2	-16.09	14.07	0.61	-14.34
ReN21-N22C32		-9.76	-18.36	8.35
pz(N11)-tol(C1)	40.80	43.63	32.29	45.04
pz(N21)-tol(C31)	13.63	27.21	29.82	36.32
tol(C1)- tol(C31)	76.86	74.55	76.03	28.43
$\Sigma \angle$'s about $N1^d$	344.44	334.46	334.85	355.62

Table S-2. Summary of Bond Distances and Angles in Rhenium Complexes 1-3.

pz = mean plane of pyrazolyl ring , tol = mean plane of C₆ ring of tolyl group; ^a Distance of normal vector between N1 and mean plane of atoms Re, C1, and C31; ^b fold angle between Re and the centroids (Ct) of N1 and N11 and Ct of C1 and N12; ^c fold angle between Re and the centroids (Ct) of N1 and N21 and Ct of C31 and N22; ^d involving Re, C1, and C31.

Spectroscopic and Electrochemical Characterization.

Figure S-3. Overlay of IR spectroscopic data for carbonyl stretching region of **1** obtained from (a) KBr pellets and (b) from CH_2Cl_2 solutions.

Figure S-4. Top: Cyclic voltammograms of **3** in CH_2Cl_2 with NBu_4PF_6 as supporting electrolyte recorded at 100 mV/s. Bottom: Scan rate dependence of **3** in CH_2Cl_2 and in CH_3CN

Figure S-6. ESI(+) mass spectrum of 1 (CH₃CN).

Figure S-7. ESI(+) mass spectrum of 2·PF₆ (CH₃CN).

Figure S-8. Direct Exposure Probe (EI) mass spectrum of 3.

Figure S-9. The 400 MHz ¹H NMR spectrum of **1** in CD_2Cl_2 (*) at 293 K with three main species **I** (major asymmetric), **II** (Symmetric), **III** (minor asymmetric) easily identified in the N-H, H₄pz, and CH₃ regions.

Figure S-10. The aromatic region of the DQCOSY 1 H NMR spectrum (400 MHz) of **1** in CD₂Cl₂ at 293 K.

Figure S-11. General features of variable temperature ¹H NMR spectra of **1** in (a) CD_2Cl_2 ($\delta_H = 5.33$ ppm) and in (b) $C_2D_2Cl_4$ (aromatic region emphasized, with NH region inset). Red squares: Major asymmetric species, **I**; Blue circles: symmetric species, **I**; green triangles: Minor asymmetric species, **II**.

Figure S-12. Relative composition of three species as a function of temperature, obtained by averaging the relative integrations of N-H, H₄pz, and CH₃- regions of the ¹H NMR spectra, of **1** in (a) CD₂Cl₂ and (b) $C_2D_2Cl_4$.

Figure S-13. Variable temperature ¹H NMR spectra of (a) 2·PF₆ and (b) 2·OTf in CD₂Cl₂.

Figure S-14. Variable temperature ¹H NMR spectrum of 3 in CD₂Cl₂.

Table S-3. Summary of room temperature (293 K) ¹H NMR chemical shift data (CD₂Cl₂).

	H(L)	F	$Re(CO)_3Br[H(L)](1)$		$\left[\operatorname{Re}(\operatorname{CO})_{3}\left[\operatorname{H}(\operatorname{L})\right]^{+}(2)\right]$		$Re(CO)_{3}L(3)$
Assign		symm	asym min	asym maj	OTf	PF ₆	
NH	8.48	11.92	11.40	9.89	9.79	7.77	
H ₃ pz bnd		7.92	8.13	8.17	7.93	7.95	7.95
H ₃ pz unb	7.72		7.90	7.31			
H_5pz bnd		7.91	8.22	8.18	7.89	7.92	7.92
H₅pz unb	7.68		8.01	7.88			
H_4pz bnd		6.51	6.76	6.77	6.55	6.58	6.51
H ₄ pz unb	6.43		6.61	6.41			
$\operatorname{Ar}_{\operatorname{AB}}$ bnd		7.57	6.86	7.58	7.26	7.22	7.81
Ar _{AB} unb	7.25		7.55	7.21			
$Ar_{AB'}$ bnd		7.32	5.94	7.18	7.19	7.18	7.12
$\mathrm{Ar}_{\mathrm{AB'}}$ unb	7.03		7.35	7.14			
Ar-H bnd		7.36	7.48	7.35	7.15	7.17	7.10
Ar-H unb	7.12		7.09	7.17			
CH ₃ bnd		2.37	2.51	2.47	2.39	2.41	2.36
CH ₃ unb	2.30		2.32	2.44			

Discussion of NMR spectra and solution structures of 1-3.

The ¹H NMR spectrum of pure **1** in various solvents is much more complicated than anticipated from the solid state structure owing to the presence of three species tentatively assigned based on comparison of solution properties [NMR, IR, CV, UV, ESI(+)] of related species and on molecular modeling, as arising from different (interconvertible) geometric and coordination isomers of ReBr(CO)₃[**H**(**L**)], shown in Scheme S-1. That is, if the solid state structure of **1** were retained in solution (similar to the right of Scheme S-1), the ¹H NMR

Scheme S-1. Different low-energy (MMFF) geometric and coordination isomers of ReBr(CO)₃[H(L)].

spectrum would be expected to give a single resonance for the N-H group and two sets of signals for each pyrazolyl and tolyl groups arising from the asymmetric nature of ligand bonding (one rhenium-bound and one unbound arm of the ligand). Instead, three species are found in the NMR spectrum of 1 in CH₂Cl₂ (and other chlorinated solvents) that are most easily distinguished by the three resonances above 9 ppm for a nitrogen-bound hydrogen of each (lower left of Figure S-9 with assignments in Table S-3). By relative integration, these three species occur in a 48:42:10 ratio at room temperature. Accordingly, there are resonances for three different species in the higher field regions of the NMR spectrum. The second most intense set of resonances corresponds to a symmetric species, presumably $[fac-Re(CO)_3[H(L)]^+](Br^-)$ (left of Scheme S-1, vide infra), that shows only a single set of resonances each for pyrazolyl and tolyl group hydrogens. Although the structure on the left of Scheme S-1, appears asymmetric, it is noted that the ¹H NMR spectra of 2·X (X = PF₆, OTf) that have similar solid state structures each show a symmetric ligand environment due to rapid conformational processes that did not reach the slow exchange limit even at -80°C (Figure S-13). Moreover, the chemical shifts of the symmetric bromide species are quite similar to the latter two complexes (Table S-3) where subtle differences are anticipated by the presence of different anions. There are two other species that occur in an approximate 4:1 ratio whose signals are consistent with an asymmetric ligand binding environment (with two sets of pyrazolyl and two sets of tolyl hydrogen resonances for each species). The number or resonances and their chemical shifts are consistent with the expectations described above for 1, if the solution structures of each species were similar to the

solid state. The resonances in the region 6.0 to 6.7 ppm for 4-pyrazolyl hydrogens and in the region 2.2 to 2.5 ppm for tolyl-CH₃ hydrogens are sufficiently resolved (Figure S-9) to allow relative integrations which reproduce the 48 (symmetric): 42 (major asymmetric): 10 (minor asymmetric) ratio observed in the N-H region of the spectrum and also allow assignments to the latter hydrogens. The resonances for the remaining hydrogens of each species could be assigned by examining the cross-peaks in the DQCOSY ¹H NMR spectrum (Figure S-10), by their temperature dependence, as well as by comparison of chemical shifts and relative intensities in different solvents Figures S-11 to S-14), features that will be elaborated on in the full paper. The signals for the major asymmetric species are most likely due to the intact complex 1 (right of Figure) on the basis of IR, cyclic voltammetry and to a lesser extent ESI(+) mass spectrometry for CH₃CN solutions. That is the solid state IR spectrum (Figure S-3, left) for 1 consists of an intense sharp single A₁ (if one assumes C_{3v} local symmetry) C-O stretch at 2020 cm⁻¹ which is in between that for $2 \cdot X$ (2042 cm⁻¹) and 3 (2013 cm⁻¹), as expected. On the other hand, the solution (CH_2Cl_2) spectrum of 1 (Figure S-3, right) consists of three sharp A₁ (if one assumes C_{3v} local symmetry) C-O stretches at 2038, 2029, and 2017 cm⁻¹ (minor). The first band is consistent with the energy range for $2 \cdot X$ and the lowest-energy minor band consistent with the deprotonated amido 3; the intense band at 2029 is likely due to intact 1. Moreover, the cyclic voltammogram of 1 recorded in CH₂Cl₂ (Figure S-4) shows an irreversible wave with E_{pa} near +0.86 V (vs Ag/AgCl) due to the Br⁻/Br^o couple, a fairly high-current irreversible wave with E_{pa} near +1.26 V consistent with other (NN-L)Re^IBr/(NN-L)Re^{II}Br couples, and a more intense irreversible wave with E_{pa} near +1.26 V consistent with cationic (NN-L)Re^I/(NN-L)Re^{II} couples.^{S9} The ESI spectrum of **1** (Figure S-6) also shows that the parent ion (100% relative intensity) at m/z = 600is due to $\{[H(L)]Re(CO)_3]\}^+$ but even under these conditions peaks for intact 1 and those for intact 1 bound to various cations present (H⁺, Na⁺, K⁺) under the conditions of the experiment (arising from the spectrometer, not impurities in the sample) are still observed. The assignment of the third (minor asymmetric) species as being due to the species in the middle of Scheme S-1 is the most tentative of the assignments, which is based on the observations from simple molecular mechanics modeling (MMFF) which identified this species as the lowest-energy structure of the multitude examined. This species can be considered as an intermediate arising from the ionization of 1 to give species such as 2. An alternative assignment of the minor asymmetric species being due to different conformers of intact 1 where the axial and bromide groups are exchanged such that N-H and Re-CO are in the same direction with HN-ReC torsion near 0° or a conformer with a fac-Re(CO)₃ kernel possessing a HN-ReBr torsion of 90° was disfavored as these conformers were found to be nearly isoergonic, separated only by about 2 kcal in energy (with the latter being lowest energy), but cannot be excluded. Moreover, *trans*-Re(CO)₃ isomers seemed also less likely considering that only fac- isomers were ever observed throughout the series of coordination complexes of this ligand. This latter assignment and the mechanistic features for the interconversions of species will be probed in greater detail in the full paper that describes the effects of 3-pyrazolyl substitution on the properties of the complexes.

Figure S-15. Spectrophotometric titration of **3** in CH_2Cl_2 using $(CRET^+)(SbCl_6^-)$ showing uncluttered character of one-electron transfer.

Computational Details. Calculations utilized the SPARTAN'08 program suite,^{S10} where gas phase structures of the metal complexes were optimized using the BP86/6-31G* density functional theoretical model owing to the demonstrated success of this model when applied to other complexes.^{S11} In the current cases, the structures all possess C₁symmetry and the agreement between this model and solid state structures was very good with the computational model closely replicating the main features of the solid state structures but with bond distances generally between 0.01 Å to 0.05 Å longer than experimental structures. Single point energy and time-dependent density functional calculations were performed on the energy-minimized structures using the hybrid B3LYP method, which incorporates Becke's three-parameter exchange functional (B3)^{S12} with the Lee, Yang, and Parr (LYP)^{S13} correlation functional where the LACVP* effective core potential^{S14} basis set was employed. The time-dependent density functional calculations were performed on the six lowest-energy singlet and six-lowest energy triplet excited states of each complex **1**, **2**⁺, and **3**, but only the first six excited doublet states of **3**⁺ and the results are summarized in Figures S-17 to S-22 as well as in Tables S-9, pp S-39 to S-42.

Figure S-16. Overlay of experimental (green) and calculated structures ((u)BP86/LACVP*) for **3** (black) and 3^+ (pink) (hydrogens removed for clarity) and selected interatomic distances and angles tabulated.

	Experimental	Calculated [(U)BP86/LACVP*]	
	3	3	3+
Re-N _{Ar} (Å)	2.163	2.185	2.148
Re-N _{pz} (Å)	2.161	2.199	2.193
Re-C _{avg} (Å)	1.928	1.926	1.940
ReN-NC (°)	11.3	10.5	8.7
pz-tolyl (°)	36.3	38.7	36.7
tolyl-tolyl (°)	28.4	37.5	42.6

Table S-4.	Cartesian coordinates	for calculated	structure of 1.
------------	-----------------------	----------------	-----------------

Coordinates (Angstroms)

I Ato	om X	igstroms) Y	Z
1 Re	0.80413	3 -1.224656	-0.676135
2 Br	-0.694322	2 -2.280073	1.257486
30	-1.161920	-2.330919	-2.797152
40	2.47240	4 0.204259	-2.854470
5 O	2.506622	2 -3.779384	-0.951285
6 N 7 N	2.006854		1.000443
/ IN O NI	2.201373 _1 511707	1 252022	1.28/082
9 N	-2 63808	1 0 853845	1 779690
10 N	-0.32923	6 0.729218	-0.046409
11 H	-0.39849	9 0.573295	0.984891
12 C	2.589132	2 -1.137528	2.004698
13 H	2.52824	9 -2.224300	2.009906
14 C	3.17457	5 -0.257860	2.939513
15 H	3.70238	6 -0.517524	3.854875
16 C	2.905278	1.015385	2.458082
17 H	3.119570	2.004269	2.857802
18 C	1.78627	1.929999	0.419018
19 C	2.649982	2 3.026311	0.253090
20 H	3.636590	2.991598	0.727418
21 C	2.28/308	4.13/089	-0.525400
22 C	1.023940	1 1 050122	-1.754628
23 II 24 C	0.16367	5 3 013181	-1 000412
2.5 H	-0.81537	1 3.032810	-1.484549
26 C	0.52517	9 1.900997	-0.225098
27 C	3.23671	5 5.299003	-0.721307
28 H	2.70270	6.265056	-0.684879
29 H	3.738398	5.242197	-1.705782
30 H	4.02445	5.315726	0.050624
31 C	-1.698128	3 1.109914	3.694981
32 H	-0.926422	1.410413	4.404620
33 C	-2.93403	5 0.466368	3.945232
34 H	-3.34310	0.139521	4.899682
35 C	-3.50888	2 0.309435	2.692489
30 п 37 С	-2 79897	-0.175762 5 0.916708	2.379947
38 C	-4 10722	5 1 006450	-0 149105
39 H	-4.94279	7 1.083675	0.554608
40 C	-4.36373	1.027360	-1.527848
41 C	-3.261298	0.965674	-2.403764
42 H	-3.422923	3 0.968742	-3.487394
43 C	-1.958052	0.880373	-1.906915
44 H	-1.111283	0.804190	-2.596203
45 C	-1.70056	7 0.857510	-0.525206
46 C	-5.777502	1.141148	-2.055155
47 H	-6.518360	0.816380	-1.304952
48 H	-5.916632	2 0.524498	-2.960228
49 H	-6.02108	± 2.185123	-2.3311/4
50 C	-U.4154/2	-1.90/2//	-1.996151 -2.015656
52 C	1 Q1076	-0.335511	-2.UI3656 _0 871043
JZ U	T.04030	-2.000119	-0.0/1043

Table S-5. Cartesian coordinates for calculated structure of 2.

Сс	oord	dinates (Angs	stroms)	
I	Ato	om X	Y	Z
1	Re	0.896247	-1.405138	-1.790988
2	0	3.942659	-0.837151	-1.665003
3	0	1.515581	-4.429957	-1.504601
4	0	1.091645	-1.556714	-4.867611
5	Ν	-1.255876	-1.905205	-1.860177
6	Ν	-2.140739	-1.841653	-0.804274
7	Ν	0.340544	0.712152	-1.728209
8	Ν	0.783622	1.556308	-0.733048
9	Ν	0.501160	-1.046798	0.466095
1(ЭH	0.677169	-1.961632	0.909176
11	1 C	-1.818881	-2.746152	-2.756312
12	2 H	-1.288006	-2.979530	-3.677804
13	3 C	-3.054467	-3.233771	-2.293301
14	4 H	-3.720043	-3.937512	-2.788840
15	o C	-3.228330	-2.645530	-1.050207
10	5 H	-4.020090	-2.750727	-0.312053
1		-2.038550	-0.915/12	0.2/94/8
10		-3.252//1	-0.3/1433	0./52268
13	эн	-4.1/1483	-0.38//34	0.198598
20		-2 109661	0.455167	2 539551
2-		-2.109001 -2.112779	1 388042	2.009001
22	2 11	-2.112779	1.300042	2 055585
24	с 4 н	0.032849	0.202000	2 573610
25	5 C	-0.828085	-0.564253	0.919628
26	6 C	-4.640203	0.992795	2.384026
27	7 H	-5.435188	0.896711	1.626474
28	3 н	-4.559878	2.056544	2.666698
29	Э Н	-4.968754	0.441801	3.284963
30) C	-0.453404	1.460998	-2.520483
31	1 H	-0.927616	1.002963	-3.387388
32	2 C	-0.527276	2.787395	-2.049510
33	3 H	-1.090173	3.614302	-2.477527
34	4 C	0.268011	2.813409	-0.910880
35	5 H	0.492742	3.609602	-0.203632
36	5 C	1.716283	1.124789	0.257149
31	7 C	2.778692	1.968375	0.614826
38	3 H	2.883205	2.932281	0.104757
39	9 C	3.735301	1.576352	1.572206
40		3.599584	0.301825	2.156493
4		4.333589	-0.036786	2.895457
42		2.540/4/	-0.548801	1.807789
43		2.431936 1 601067	-I.JJ4223	2.201011
44 21		1.J910J/ 4 903021	-U.IJUI34 2 47/271	1 011601
	с К н	5 250221	2 309015	2 94/926
4	у 11 7 Н	4 644762	2.505045 3 540660	1 799721
49	, <u>11</u> 3 Н	5.758470	2.270099	1.240570
40	9 C	2.790134	-1.039285	-1.705012
50) C	1.287013	-3.288326	-1.635174
51	1 C	1.049054	-1.510397	-3.696744

Table S-6. Cartesian coordinates for calculated structure of 3.

Сс	Coordinates (Angstroms)					
Ι	ATC	X Mo	Y	Z		
1	Re	-0.192911	1.828400	-1.226229		
2	0	-0.389511	4.857415	-1.872684		
3	0	1.598964	1.320824	-3.702910		
4	0	-2.699187	1.289640	-2.978442		
5	Ν	1.549526	1.206831	0.438803		
7	Ν	-1.383074	2.008199	0.636258		
8	Ν	-2.072180	0.937867	1.158362		
9	Ν	-0.015316	-0.180634	-0.384358		
10) C	1.944861	3.324529	0.643890		
11	. Н	1.398007	4.246036	0.451560		
12	2 C	3.069798	3.091977	1.454291		
13	S H	3.605157	3.80/32/	2.0/5424		
14	L C	3.33/686	1./35005	1.312385		
15) H	4.075850	1.092968	1.785645		
16	o C	2.401846	-0.152017	-0.012498		
17	C	3.652180	-0.802813	-0.056047		
18	S H	4.561126	-0.193458	0.00/849		
TS	C	3./63231	-2.193346	-0.168494		
20) C	2.553513	-2.921474	-0.183838		
21	. Н	2.583988	-4.018395	-0.194590		
22	2 C	1.313277	-2.287010	-0.216011		
23	S H	0.411651	-2.902/03	-0.221048		
24	l C	1.1/4335	-0.864849	-0.234418		
25	• C	-1.4/2/28	2.989482	1.556341		
26) H	-0.992586	3.94/94/	1.36/0/2		
21		-2.21/243	2.565835	2.6/59/8		
28	S H	-2.44//43	3.131424	3.5/6534		
29		-2.580385	1.254972	2.389053		
30) H	-3.134/09	0.514017	2.9613/3		
31		-2.311142	-0.255289	0.409445		
32		-3.602587	-0.809648	0.442/33		
33	S Н	-4.386392	-0.294929	1.0105/3		
34	I C	-3.90/321	-1.981075	-0.267201		
35		-2.885083	-2.539851	-1.063433		
30		-3.106220	-3.418883	-1.681619		
31		-1.605997	-1.9/9004	-1.110032		
20	л	-0.004070	-2.390031	-1.005172		
35		-1.238338 E 205102	-0.834867	-0.354410		
40		-5.285192	-2.603764	-0.205612		
41	. H	-5.286968	-3.510625	0.420689		
42		-5.639791	-2.899682	-1.2091//		
43	п	-0.020734	-1.907934	1 665604		
44		-0.329123	J.UJUOUU 1 510700	-1.000004		
40		U. 943400 _1 7575 <i>16</i>	1 /01600	-2 302012		
40		-1.1J1340 5 102022	_2 8707//	-2.302013		
- 1 C	2 11	5 3/3511	-2.0/9/44 -3 175000	-0.2043/1		
- 4 C	, п , п	5 025705	-J.1/J/22 _2.200/57	-1.303340 0 000070		
43	, n) u	5 12/072	-3 800670	0.000079		
	, п 	J.1J49/Z	-3.000079	0.340003		

Table S-7. Cartesian coordinates for calculated structure of 3^+ .

Сс	orc	linates (Angs	stroms)	
Ι	Ato	om X	Y	Z
1	Re	0.074210	1.139831	0.653655
2	0	-1.650633	0.695408	3.198864
3	0	0.151434	4.213500	1.145173
Δ	0	2 679575	0 831781	2 318335
-	N	1 206004	1 244010	1 220672
5	IN	1.200004	1.244010	-1.230073
6	IN	1.918436	0.156220	-1./01383
/	Ν	-1./29535	1.320/25	-0.549223
8	Ν	-2.588673	0.284651	-0.831331
9	Ν	-0.021263	-0.917670	0.047356
1(C	1.245239	2.156389	-2.231361
11	1 C	1.973462	1.671361	-3.336546
12	2 H	2.165561	2.177666	-4.280270
13	3 C	2.387601	0.399272	-2.965705
14	4 н	2.957982	-0.358461	-3.499689
1.	5 C	2.245628	-0.948421	-0.857225
16	5 C	3 547770	-1 469251	-0 904026
1 '	ос 7 ц	1 282396	-1 005308	-1 570969
1		2 020601	-2 527224	_0 075155
10		3.959001 2.00CEC2	-2.007004	-0.075155
13		2.986362	-3.051923	0.828655
20	ЭН	3.2/6250	-3.849216	1.522059
2.	LC	1.683317	-2.54/863	0.878662
22	2 H	0.979046	-2.925501	1.625957
23	3 C	1.272188	-1.509013	0.013768
24	4 C	5.357052	-3.059028	-0.100803
25	5 H	5.393282	-4.135175	0.137719
20	6 Н	5.979038	-2.536434	0.650484
21	7 Н	5.831588	-2.905163	-1.084233
28	3 C	-2.240653	2.407431	-1.160981
29	9 C	-3,421850	2.086328	-1.860090
30	Эн	-4 043012	2 749554	-2 458532
3	1 C	-3 612974	0 733611	-1 639176
3	2 U	-1 362518	0.046769	-2 023160
24		-4.502540	1 051457	-2.023100
э. Э		-2.440490	-1.051457	-0.303094
34	4 C	-3.612804	-1.819104	-0.274692
3:	ЭΗ	-4.581630	-1.313916	-0.330826
30	o C	-3.585440	-3.216999	-0.121400
3.	7 C	-2.315837	-3.849613	-0.124298
38	3 H	-2.255773	-4.942776	-0.085034
39	9 C	-1.146017	-3.107058	-0.144418
4(ЭH	-0.185347	-3.624243	-0.125411
41	1 C	-1.151191	-1.672740	-0.148329
42	2 C	-4.853866	-4.017915	0.012605
43	3 Н	-4.916342	-4.796923	-0.769619
44	4 н	-5.753269	-3.385376	-0.057522
4	5 H	-4.883768	-4.543413	0.985520
4	5 0	-0 999529	0 879440	2 245639
<u>،</u> ت		1 702874	0 942889	1 685353
-1 / (1 1 2 0 7 1	3 052511	1.0000000
40		U.IJOJ/4 1 727/00	3.032314	1 050240
4	א ש די ר	-1./3/082	3.300009 3.117056	-1.052348
5(νН	0./50442	3.11/956	-2.101853

	1	2	3	α -3 ⁺	β- 3 ⁺
LUMO(+5)	+3.20	+0.63	+3.48	+0.33	+0.19
LUMO(+4)	+3.06	+0.42	+3.24	+0.11	+0.02
LUMO(+3)	+2.79	+0.21	+3.18	-0.24	-0.31
LUMO(+2)	+2.56	-0.10	+2.87	-0.42	-0.73
LUMO(+1)	+2.37	-0.50	+2.51	-0.84	-0.83
LUMO	+1.85	-0.74	+2.40	-1.17	-4.05
НОМО	-8.36	-10.99	-6.56	-11.40	-11.49
HOMO(-1)	-8.44	-11.16	-8.24	-11.71	-11.66
HOMO(-2)	-8.72	-11.49	-8.45	-11.93	-11.86
HOMO(-3)	-9.11	-11.67	-8.70	-12.39	-12.33
HOMO(-4)	-9.19	-11.93	-8.95	-12.41	-12.44
HOMO(-5)	-9.55	-12.13	-9.08	-12.66	-12.66
SCF energy(au)	-1470.20948	-1457.04671	-1456.63159	-1456.	46797

Table S-8. Calculated SCF and Frontier Orbital Energies (eV) for 1, 2, 3, and 3^+ .

LUMO (+3)	LUMO (+4)	LUMO (+5)

Fig. S-17. Frontier Orbitals for $ReBr(CO)_3[(HL)]$ (1) from DFT calculations (B3LYP/LACVP*).

	A Contraction of the second se	
LUMO	LUMO(+1)	LUMO(+2)

	X	* The second sec
HOMO(-3)	HOMO(-4)	HOMO(-5)

	A second	
LUMO (+3)	LUMO (+4)	LUMO (+5)

Fig. S-18. Frontier Orbitals for {Re(CO)₃[(**HL**)]}⁺ (**2**) from DFT calculations (B3LYP/LACVP*).

		X Contract
НОМО	HOMO(-1)	HOMO(-2)

LUMO (+3)	LUMO (+4)	LUMO (+5)

Fig. S-19. Frontier Orbitals for Re(CO)₃(L) (3) from DFT calculations (B3LYP/LACVP*).

LUMO	LUMO(+1)	LUMO(+2)

 Image: Moment of the second second

α-LUMO (+3)	α-LUMO (+4)	α-LUMO (+5)

Fig. S-20. Alpha Spin Frontier Orbitals for $[Re(CO)_3(L)]^+$ (**3**⁺) from DFT calculations (B3LYP/LACVP*).

α-LUMO	α-LUMO(+1)	α-LUMO(+2)

β-LUMO (+3)	β-LUMO (+4)	β-LUMO (+5)

Fig. S-21. Beta Spin Frontier Orbitals for $[Re(CO)_3(L)]^+$ (**3**⁺) from DFT calculations (B3LYP/LACVP*).

β-LUMO	β-LUMO(+1)	β-LUMO(+2)

β-ΗΟΜΟ	β-HOMO(-1)	β-HOMO(-2)

β-HOMO(-3)	β-HOMO(-4)	β-HOMO(-5)

Figure S-22. Simulated electronic absorption spectra of $1, 2^+, 3$, and 3^+ fitted with Gaussian curves with full-width-at-half-maximum of 40 nm.

TDDFT/TDA Excitation Energies for 1

Excited state 1: excitation energy (eV) = 3.2566Total energy for state 1: -1479.622018059532 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(119) --> V(1) amplitude = 0.9556

Excited state 2: excitation energy (eV) = 3.3301Total energy for state 2: -1479.619318640326 Multiplicity: Singlet Trans. Mom.: 0.1484 X 0.2565 Y 0.1735 Z Strength : 0.0096 D(119) --> V(1) amplitude = 0.9896

Excited state 3: excitation energy (eV) = 3.3372Total energy for state 3: -1479.619058899995 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(118) --> V(1) amplitude = 0.9466

Excited state 4: excitation energy (eV) = 3.3868Total energy for state 4: -1479.617236331303 Multiplicity: Singlet Trans. Mom.: -0.0257 X -0.0487 Y 0.1487 Z Strength : 0.0021 D(118) --> V(1) amplitude = 0.9903

Excited state 5: excitation energy (eV) = 3.5366Total energy for state 5: -1479.611728580531Multiplicity: Triplet Trans. Mom.: $0.0000 \times 0.0000 Y 0.0000 Z$ Strength : 0.0000D(118) --> V(3) amplitude = -0.3066D(118) --> V(4) amplitude = 0.2180D(119) --> V(3) amplitude = 0.5487D(119) --> V(4) amplitude = -0.4354D(119) --> V(5) amplitude = -0.2929D(119) --> V(6) amplitude = 0.2462

Excited state 6: excitation energy (eV) = 3.5811Total energy for state 6: -1479.610093180668Multiplicity: Triplet Trans. Mom.: $0.0000 \times 0.0021 \times 0.0000 Z$ Strength : 0.0096D(111) --> V(1) amplitude = -0.3308D(114) --> V(1) amplitude = 0.3991D(115) --> V(1) amplitude = 0.2687D(116) --> V(1) amplitude = 0.4482D(117) --> V(1) amplitude = 0.3440

Key:
$$D(115) = HOMO, V(1) = LUMO$$

 $D(114) = HOMO(-1), V(2) = L(+1);$ etc.

Excited state 7: excitation energy (eV) = 3.6113Total energy for state 7: -1479.608983753050 Multiplicity: Triplet Trans. Mom.: 0.0096 X 0.0000 Y 0.0000 Z Strength : 0.0096 D(118) --> V(3) amplitude = 0.6006 D(118) --> V(4) amplitude = -0.2998 D(118) --> V(5) amplitude = -0.4026 D(119) --> V(3) amplitude = 0.3342

Excited state 8: excitation energy (eV) = 3.6282Total energy for state 8: -1479.608364006247Multiplicity: Triplet Trans. Mom.: $0.0000 \times 0.0000 Y 0.0000 Z$ Strength : 0.0000D(114) --> V(2) amplitude = -0.3266D(116) --> V(2) amplitude = 0.5812D(117) --> V(2) amplitude = 0.2961D(118) --> V(2) amplitude = 0.2227

Excited state 9: excitation energy (eV) = 3.7502Total energy for state 9: -1479.603879107580 Multiplicity: Singlet Trans. Mom.: -0.0779 X 0.0099 Y 0.1454 Z Strength : 0.0025 D(119) --> V(2) amplitude = 0.7575 D(119) --> V(3) amplitude = -0.4618 D(119) --> V(4) amplitude = 0.2907

Excited state 10: excit. energy (eV) = 3.7823Total energy for state 10: -1479.602701674650 Multiplicity: Singlet Trans. Mom.: -0.1013 X 0.0130 Y -0.0128 Z Strength : 0.0010 D(119) --> V(2) amplitude = 0.6030 D(119) --> V(3) amplitude = 0.6577 D(119) --> V(4) amplitude = -0.2617 D(119) --> V(5) amplitude = -0.2688

Excited state 11: excit. energy (eV) = 3.7916Total energy for state 11: -1479.602357313963 Multiplicity: Singlet Trans. Mom.: 0.0301 X 0.0180 Y -0.0796 Z Strength : 0.0007 D(118) --> V(2) amplitude = 0.9253 D(118) --> V(4) amplitude = 0.2326

Excited state 12: excit. energy (eV) = 3.8940Total energy for state 12: -1479.598596977632 Multiplicity: Singlet Trans. Mom.: 0.0066 X -0.1926 Y 0.0605 Z Strength : 0.0039 D(118) --> V(2) amplitude = 0.3097 D(118) --> V(3) amplitude = 0.7089 D(118) --> V(4) amplitude = -0.4187

TDDFT/TDA Excitation Energies for 2

Excited state 1: excitation energy (eV) = 3.0361Total energy for state 1: -1466.353429882337 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(115) --> V(1) amplitude = 0.9872

Excited state 2: excitation energy (eV) = 3.1701Total energy for state 2: -1466.348505355361Multiplicity: Triplet Trans. Mom.: $0.0000 \times 0.0000 \times 0.0000 Z$ Strength : 0.0000D(115) --> V(2) amplitude = 0.9768

Excited state 3: excitation energy (eV) = 3.2342Total energy for state 3: -1466.346152520360 Multiplicity: Singlet Trans. Mom.: 0.4473 X 0.3013 Y -0.1558 Z Strength : 0.0250 D(115) --> V(1) amplitude = 0.9427 D(115) --> V(2) amplitude = 0.2445

Excited state 4: excitation energy (eV) = 3.2628Total energy for state 4: -1466.345098410478 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(114) --> V(1) amplitude = 0.6663 D(114) --> V(2) amplitude = 0.6822

Excited state 5: excitation energy (eV) = 3.2991Total energy for state 5: -1466.343764711871Multiplicity: Triplet Trans. Mom.: $0.0250 \ge 0.0000 \ge 0.0000 \ge 0.0000$ Strength : 0.0000D(114) --> V(1) amplitude = 0.7391D(114) --> V(2) amplitude = -0.6300

Excited state 6: excitation energy (eV) = 3.3204Total energy for state 6: -1466.342984703722Multiplicity: Singlet Trans. Mom.: $-0.1553 \times 0.1778 \times 0.1271 \text{ Z}$ Strength : 0.0058D(113) --> V(1) amplitude = 0.2170D(114) --> V(1) amplitude = -0.5361D(115) --> V(2) amplitude = 0.7828

Key: D(115) = HOMO, V(1) = LUMO D(114) = HOMO(-1), V(2) = L(+1); etc. **Excited state 7:** excitation energy (eV) = 3.3299Total energy for state 7: -1466.342634951297 Multiplicity: Singlet Trans. Mom.: -0.3451 X 0.0899 Y 0.0839 Z Strength : 0.0109 D(114) --> V(1) amplitude = 0.8302 D(115) --> V(2) amplitude = 0.4708

Excited state 8: excitation energy (eV) = 3.3778Total energy for state 8: -1466.340873967388 Multiplicity: Triplet Trans. Mom.: 0.0109 X 0.0058 Y 0.0000 Z Strength : 0.0058 D(112) --> V(1) amplitude = 0.3153 D(113) --> V(1) amplitude = 0.8943

Excited state 9: excitation energy (eV) = 3.4955Total energy for state 9: -1466.336549137390Multiplicity: Singlet Trans. Mom.: $0.2379 \times 0.0836 \times -0.0727 \text{ Z}$ Strength : 0.0059D(113) --> V(1) amplitude = 0.7007D(114) --> V(2) amplitude = 0.6488

Excited state 10: excitation energy (eV) = 3.5018Total energy for state 10: -1466.336315114806 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(111) --> V(1) amplitude = 0.2770 D(112) --> V(1) amplitude = -0.5215 D(113) --> V(1) amplitude = 0.3122 D(113) --> V(2) amplitude = 0.6615

Excited state 11: excitation energy (eV) = 3.5240Total energy for state 11: -1466.335502452611 Multiplicity: Singlet Trans. Mom.: $0.3531 \times -0.1666 \times 0.0113 \text{ Z}$ Strength : 0.0132D(113) --> V(1) amplitude = 0.6017D(113) --> V(2) amplitude = -0.4123D(114) --> V(2) amplitude = -0.6004

Excited state 12: excitation energy (eV) = 3.6325Total energy for state 12: -1466.331514831832 Multiplicity: Singlet Trans. Mom.: 0.0767 X -0.4484 Y -0.1075 Z Strength : 0.0194 D(113) --> V(2) amplitude = 0.8711D(114) --> V(2) amplitude = -0.3270

TDDFT/TDA Excitation Energies for 3

Excited state 1: excitation energy (eV) = 2.2431Total energy for state 1: -1465.352989987785 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(115) --> V(1) amplitude = 0.9899

Excited state 2: excitation energy (eV) = 2.3402Total energy for state 2: -1465.349423764482 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(115) --> V(2) amplitude = 0.9872

Excited state 3: excitation energy (eV) = 2.4011Total energy for state 3: -1465.347184678253Multiplicity: Singlet Trans. Mom.: $-0.6578 \ge 0.3729 \ge 0.0944 \ge 2$ Strength : 0.0342D(115) --> V(1) amplitude = 0.9768

Excited state 4: excitation energy (eV) = 2.7098Total energy for state 4: -1465.335842155477 Multiplicity: Singlet Trans. Mom.: -0.6957 X -0.6940 Y -0.1474 Z Strength : 0.0655 D(115) --> V(2) amplitude = 0.9415

Excited state 5: excitation energy (eV) = 2.7131Total energy for state 5: -1465.335720453897 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(115) --> V(3) amplitude = 0.9939

Excited state 6: excitation energy (eV) = 2.8580Total energy for state 6: -1465.330395849302 Multiplicity: Triplet Trans. Mom.: 0.0342 X 0.0655 Y 0.0000 Z Strength : 0.0000 D(115) --> V(4) amplitude = 0.9818

Key: D(115) = HOMO, V(1) = LUMO D(114) = HOMO(-1), V(2) = L(+1); etc. **Excited state 7:** excitation energy (eV) = 2.8727Total energy for state 7: -1465.329852633203 Multiplicity: Singlet Trans. Mom.: 0.0862 X 0.1373 Y 0.0023 Z Strength : 0.0018 D(115) --> V(3) amplitude = 0.9629

Excited state 8: excitation energy (eV) = 3.0622Total energy for state 8: -1465.322890670511 Multiplicity: Singlet Trans. Mom.: -0.1074 X 0.5055 Y -0.0351 Z Strength : 0.0201 D(115) --> V(4) amplitude = 0.9233 D(115) --> V(5) amplitude = -0.2996

Excited state 9: excitation energy (eV) = 3.0756Total energy for state 9: -1465.322398022733 Multiplicity: Triplet Trans. Mom.: 0.0018 X 0.0201 Y 0.0000 Z Strength : 0.0000 D(115) --> V(5) amplitude = 0.9686

Excited state 10: excitation energy (eV) = 3.2166Total energy for state 10: -1465.317216329854 Multiplicity: Triplet Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z Strength : 0.0000 D(114) --> V(1) amplitude = 0.9749

Excited state 11: excitation energy (eV) = 3.3077Total energy for state 11: -1465.313867583838 Multiplicity: Singlet Trans. Mom.: -0.8913 X 0.1401 Y -0.0688 Z Strength : 0.0664 D(115) --> V(4) amplitude = 0.2753 D(115) --> V(5) amplitude = 0.8773

Excited state 12: excitation energy (eV) = 3.3664Total energy for state 12: -1465.311711006372 Multiplicity: Singlet Trans. Mom.: -0.2016 X 0.1215 Y 0.3706 Z Strength : 0.0159 D(112) --> V(1) amplitude = 0.2309 D(114) --> V(1) amplitude = 0.9118

TDDFT/TDA Excitation Energies for 3⁺

Excited state 1: excitation energy (eV) = 1.1461Total energy for state 1: -1465.681866755314 <S**2>: 0.7820 Trans. Mom.: -0.0809 X 0.1636 Y 0.1911 Z Strength : 0.0020 D(112) --> S(1) amplitude = -0.1781 beta D(114) --> S(1) amplitude = 0.9801 beta

Excited state 2: excitation energy (eV) = 1.2901Total energy for state 2: -1465.676572164976 $<S^{**2}>: 0.7809$ Trans. Mom.: $-0.4551 \times 0.1278 \times 0.0430 \text{ Z}$ Strength : 0.0071D(113) --> S(1) amplitude = 0.9862 beta

Excited state 3: excitation energy (eV) = 1.7128Total energy for state 3: -1465.661039338508 $<S^{**2>}: 0.7819$ Trans. Mom.: $0.3624 \times 1.1215 \times 0.5938 \mathbb{Z}$ Strength: 0.0731D(109) --> S(1) amplitude = 0.1662 beta D(111) --> S(1) amplitude = -0.2267 beta D(112) --> S(1) amplitude = 0.9259 beta D(114) --> S(1) amplitude = 0.1717 beta

Excited state 4: excitation energy (eV) = 1.9338Total energy for state 4: -1465.652918908972 $<S^{**2>}: 0.7870$ Trans. Mom.: $0.9637 \times 0.1472 \times 0.1230 Z$ Strength: 0.0457D(110) --> S(1) amplitude = -0.2854 beta D(111) --> S(1) amplitude = 0.9185 beta D(112) --> S(1) amplitude = 0.1875 beta

Excited state 5: excitation energy (eV) = 2.0953Total energy for state 5: -1465.646981941635 $<S^{**2>}: 0.7907$ Trans. Mom.: $-0.0992 \times 0.8173 \text{ Y} -0.0029 \text{ Z}$ Strength: 0.0348D(109) --> S(1) amplitude = -0.2139 beta D(110) --> S(1) amplitude = 0.9042 beta D(111) --> S(1) amplitude = 0.2718 beta D(112) --> S(1) amplitude = 0.1638 beta

Excited state 6: excitation energy (eV) = 2.3094Total energy for state 6: -1465.639114155231 <S**2> : 0.0020 Trans. Mom.: -0.9738 X -0.5118 Y -0.2052 Z Strength : 0.0709 D(109) --> S(1) amplitude = 0.9367 beta D(110) --> S(1) amplitude = 0.2490 beta Key: $D(114) = \beta$ -HOMO, S(1) = SOMO $D(113) = \beta$ -HOMO(-1) etc.

References.

- [S1] S.P. Schmidt, W.C. Trogler, F. Basolo, *Inorg. Synth.* 1990, 28, 160.
- [S2] L. Fan, B.M. Foxman, O.V. Ozerov, *Organometallics* 2004, 23, 326.
- [S3] I. Noviandri, K.N. Brown, D.S. Fleming, P.T. Gulyas, P.A. Lay, A.F. Masters, L. Phillips, J. Phys. Chem. B 1999, 103, 6713.
- [S4] R. Rathore, C.L. Burns, M.I. Deselinescu, S.E. Denmark, T. Bui, Org. Synth. 2005, 82, 1.
- [S5] SMART APEX2 Version 2.0-2 Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 2005.
- [S6] SAINT+ Version 7.23a and SADABS Version 2.05. TWINABS Bruker Analytical Xray Systems, Inc., Madison, Wisconsin, USA, 2007.
- [S7] Sheldrick, G. M. SHELXTL Version 6.1; Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 2000.
- [S8] CCDC 759658, 759659, 759660, 759661, and 759662 contain the supplementary crystallographic data for H(L), 1, 2·PF₆, 2·OTf, and 3. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [S9] (a) B.J. Liddle, S. Waniarachchi, S.V. Lindeman, J.R. Gardinier, J. Organomet.. Chem. 2010, 695, 53. (b) L. Wei, J. Babich, W.C. Eckelman, and J. Zubieta Inorg. Chem., 2005, 44, 2198. (c) B. Machura, R. Kruszynski, M. Jaworska, P. Lodowski, R. Penczek, J. Kusz, Polyhedron 2008, 27, 1767. (c) R.M. Silva, B.J. Liddle, S.V. Lindeman, M.D. Smith, J.R. Gardinier, Inorg. Chem. 2006, 45, 6794.
- [S10] SPARTAN, Wavefunction, Inc., Irvine, CA, 1997.

- [S11] For instance see: (a) Ref S-9a. (b) T. Takatani, J. S. Sears, D. C. Sherill, *J. Phys. Chem.* A 2009, 113, 9231. (c) V.M. Rayon, G. Frenking, *Chem. Eur. J.* 2002, 8, 4693. (d) R.K.
 Szilagyi, G. Frenking, *Organometallics* 1997 16, 4807.
- [S12] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [S13] C. Lee, W. Yang, R.G. Parr, *Phys. Rev. B* 1988, 37, 785.
- [S14] (a) P. J. Hay, W.R. Wadt, J. Chem. Phys. 1985, 82, 270. (b) W.R. Wadt, P.J. Hay, J. Chem. Phys. 1985, 82, 284.