Electronic Supplementary Information

for

Sulfoxidation with Hydrogen Peroxide Catalyzed by [SeO₄{WO(O₂)₂}₂]²⁻ and The Mechanism

Keigo Kamata^{a,b} Tomohisa Hirano,^a Ryo Ishimoto,^a and Noritaka Mizuno^{*,a,b}

^aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp; Fax:

+81 3 5841 7220; Tel: +81 3 5841 7272

^bCore Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

Synthesis and Characterization of $[(n-C_4H_9)_4N]_2[SeO_4\{WO(O_2)_2\}_2]$ (I). The tetra-*n*-butylammonium salt derivative of $[SeO_4{WO(O_2)_2}_2]^{2-}$ was synthesized according to the literature procedure.^{S1} In 15% aqueous H_2O_2 (9.25 mL, 42 mmol), H_2WO_4 (1.75 g, 7 mmol) was suspended and the resulting suspension was stirred at 305 K for 30 min. The pale yellow solution was filtered to remove insoluble materials followed by addition of 80% H₂SeO₄ (2.1 mL, 28 mmol). The solution was stirred at 273 K for 60 min and an excess amount of $[(n-C_4H_9)_4N](NO_3)$ (3.05 g, 10 mmol) was added in a single step. The solution was stirred at 273 K for 30 min and the white precipitate (1.07 g) was collected by the filtration followed by the washing with an excess amount of H₂O and diethyl ether. The precipitate was evacuated to dryness. A portion of the product (0.2 g) was dissolved in the acetonitrile solution (1 mL) containing a drop of H₂O₂ at 298 K and the solution was cooled to 277 K. The colorless plate-like crystalline solid was obtained by vapor diffusion of diethyl ether into the acetonitrile solution. Yield: 0.11 g (55% based on the crude product). ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -569.2$ ($\Delta v_{1/2} = 3.9$ Hz); ⁷⁷Se NMR (51.30 MHz, CD₃CN, 298 K, (CH₃)₂Se): δ = 1168.9 ($\Delta v_{1/2}$ = 3.7 Hz); UV/Vis (CH₃CN) max (ϵ) 259 nm (1258 (mol of W)⁻¹dm³cm⁻¹); IR (KCl): 972, 915, 884, 864, 847, 831, 779, 739, 698, 654, 593, 576, 520, 463, 393, 371 cm⁻¹; Raman: v = 987, 974, 922, 884, 868, 838, 783, 599, 583, 542, 398, 336, 306, 264 cm⁻¹; positive ion MS (CSI, CH₃CN): m/z: 1398 [{ $(n-C_4H_9)_4N$ }_3SeO₄{WO(O₂)₂}₂]⁺; 2554 [{ $(n-C_4H_9)_4N$ }_5{SeO₄{WO(O₂)₂}₂]⁺; 3709 $[\{(n-C_4H_9)_4N\}_7\{SeO_4\{WO(O_2)_2\}_2\}_3]^+;$ elemental analysis calcd (%) for $C_{32}H_{72}N_2O_{14}SeW_2$ $([(n-C_4H_9)_4N]_2[SeO_4\{WO(O_2)_2\}_2])$: C 33.26, H 6.28, N 2.42, Se 6.83, W 31.82; found: C 33.21, H 6.30, N 2.48, Se 6.53, W 31.21.

Synthesis and Characterization of $[(n-C_6H_{13})_4N]_3[AsO_4\{WO(O_2)_2\}_4]$. The tetra-*n*-hexylammonium salt derivative of $[AsO_4\{WO(O_2)_2\}_4]^{3-}$ was synthesized according to the literature procedure.^{S2} Yield: 2.41 g (43%). ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K,

Na₂WO₄): $\delta = -567.5 \ (\Delta v_{1/2} = 5.0 \text{ Hz})$; UV/Vis (CH₃CN) λ_{max} (ϵ) 255.2 nm (1184 (mol of W)⁻¹dm³cm⁻¹); IR (KCl): 978, 917, 892, 876, 845, 756, 729, 647, 590, 574, 520, 485, 435 cm⁻¹; Raman: v = 990, 924, 900, 862, 843, 653, 597, 580, 534, 386, 336, 328, 303, 232 cm⁻¹; positive ion MS (CSI, CH₃CN): *m/z*: 2613 [{(*n*-C₆H₁₃)₄N}₄AsO₄{WO(O₂)₂}₄]⁺; elemental analysis calcd (%) for C₇₂H₁₅₆N₃O₂₄AsW₄ ([(*n*-C₆H₁₃)₄N]₃[AsO₄{WO(O₂)₂}₄]): C 38.29, H 6.96, N 1.86, As 3.32, W 32.56; found: C 38.06, H 6.99, N 1.80, As 3.13, W 32.39.

Synthesis and Characterization of $[(n-C_4H_9)_4N]_2[SO_4\{WO(O_2)_2\}_2]$: The tetra-*n*-butylammonium salt derivative of $[SO_4\{WO(O_2)_2\}_2]^{2^-}$ was synthesized according to the literature procedure.^{S3} Yield: 1.39 g (54%). ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -587.2 \ (\Delta v_{1/2} = 2.6 \text{ Hz})$; UV/Vis (CH₃CN) λ_{max} (ϵ) 254.1 nm (1270 (mol of W)⁻¹dm³cm⁻¹); IR (KCl): 988, 974, 962, 922, 887, 858, 850, 739, 679, 655, 646, 599, 594, 575, 540, 526, 487 cm⁻¹; Raman: v = 994, 970, 915, 883, 865, 806, 750, 662, 600, 582, 547, 409, 336, 311, 289, 266 cm⁻¹; positive ion MS (CSI, CH₃CN): *m/z*: 1351 [$\{(n-C_4H_9)_4N\}_3SO_4\{WO(O_2)_2\}_2$]⁺; elemental analysis calcd (%) for C₃₂H₇₂N₂O₁₄SW₂ ([$(n-C_4H_9)_4N\}_2$ [SO₄{WO(O₂)₂}₂]): C 34.67, H 6.55, N 2.53, W 33.16; found: C 34.69, H 6.59, N 2.44, W 34.16.

Synthesis and Characterization of $[(n-C_6H_{13})_4N]_3[PO_4\{WO(O_2)_2\}_4]$. The tetra-*n*-hexylammonium salt derivative of $[PO_4\{WO(O_2)_2\}_4]^{3^-}$ was synthesized according to the literature procedure.^{S4} Yield: 1.39 g (50%). ³¹P NMR (109.25 MHz, CD₃CN, 298 K, H₃PO₄): $\delta = 4.5 (^2J_{W-P} = 18.5 \text{ Hz});$ ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -588.2 (^2J_{W-P} = 18.4 \text{ Hz}, \Delta v_{1/2} = 7.3 \text{ Hz});$ UV/Vis (CH₃CN) λ_{max} (ϵ) 254.2 nm (1268 (mol of W)⁻¹dm³cm⁻¹); IR (KCl): 977, 853, 843, 797, 757, 728, 660, 649, 603, 591, 573, 549, 525, 444 cm⁻¹; Raman: v = 990, 864, 821, 655, 597, 580, 543, 391, 333, 305, 266, 237 cm⁻¹; positive ion MS (CSI, CH₃CN): *m/z*: 2569 [$\{(n-C_6H_{13})_4N\}_4PO_4\{WO(O_2)_2\}_4]^+$; elemental analysis calcd (%) for C₇₂H₁₅₆N₃O₂₄PW₄ ([$(n-C_6H_{13})_4N\}_3$ [PO₄{WO(O₂)₂}₄]): C 39.05, H 7.10, N 1.90, P 1.40, W 32.22; found: C 38.82, H 6.97, N 1.36, P 1.36, W 33.28.

Synthesis and Characterization of $[(n-C_4H_9)_4N]_2[HAsO_4\{WO(O_2)_2\}_2].$ The tetra-*n*-butylammonium salt derivative of $[HAsO_4{WO(O_2)_2}_2]^{2-}$ was synthesized according to the literature procedure.⁸⁵ Yield: 2.60 g (49%). ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -603.9 \ (\Delta v_{1/2} = 5.0 \text{ Hz})$; UV/Vis (CH₃CN) λ_{max} (ϵ) 252.1 nm (1330 (mol of W)⁻¹dm³cm⁻¹); IR (KCl): v = 968, 932, 871, 843, 814, 777, 739, 664, 584, 575, 569, 527, 512,495, 457, 385, 366 cm⁻¹, Raman: v = 983, 914, 889, 859, 821, 651, 580, 531, 464, 391, 315, $cm^{-1};$ m/z: 264, 237 positive ion MS (CSI, CH₃CN): 1395 $[\{(n-C_4H_9)_4N\}_3HAsO_4\{WO(O_2)_2\}_2]^+,$ $[\{(n-C_4H_9)_4N\}_5\{HAsO_4\{WO(O_2)_2\}_2\}_2]^+;$ 2548 elemental analysis calcd (%) for $C_{32}H_{73}N_2O_{14}AsW_2$ ([($n-C_4H_9)_4N$]₂[HAsO₄{WO(O₂)₂}₂]): C 33.35, H 6.38, N 2.43, As 6.50, W 31.90; found: C 33.08 H 6.33, N 2.39, As 6.35, W 31.44. Synthesis and Characterization of $[(n-C_4H_9)_4N]_2[HPO_4{WO(O_2)_2}_2].$ The tetra-*n*-butylammonium salt derivative of $[HPO_4{WO(O_2)_2}_2]^{2-}$ was synthesized according to

the literature procedure.^{S6} Yield: 1.70 g (60%). ³¹P NMR (109.25 MHz, CD₃CN, 298 K, H₃PO₄): $\delta = 2.8$ (²J_{W-P} = 17.3 Hz); ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -626.4$ (²J_{W-P} = 17.1 Hz, $\Delta v_{1/2} = 5.8$ Hz); UV/Vis (CH₃CN) λ_{max} (ϵ) 251.5 nm (1294 (mol of W)⁻¹dm³cm⁻¹); IR (KCl): 1019, 996, 963, 882, 853, 843, 800, 737, 646, 625, 584, 569, 538, 487 cm⁻¹; Raman: v = 977, 915, 887, 862, 807, 652, 582, 536, 335, 319, 300, 262, 239 cm⁻¹; positive ion MS (CSI, CH₃CN): *m/z*: 1351 [(TBA)₃HPO₄{WO(O₂)₂}₂]⁺; elemental analysis calcd (%) for C₃₂H₇₃N₂O₁₄PW₂ ([(*n*-C₄H₉)₄N]₂[HPO₄{WO(O₂)₂}₂]): C 34.67, H 6.64, N 2.53, P 2.79, W 33.17; found: C 34.50, H 6.54, N 2.33, P 2.75, W 33.48.

Synthesis and Characterization of $[(n-C_4H_9)_4N]_2[Ph_2SiO_2\{WO(O_2)_2\}_2]$. The tetra-*n*-butylammonium salt derivative of $[Ph_2SiO_2\{WO(O_2)_2\}_2]^{2^-}$ was synthesized by the modification of the reported method; tetraphenylphosphonium was replaced by

tetra-*n*-butylammonium.^{S7} Yield: 1.70 g (40%). ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 7.77$ (m, 4H, *m*-), 7.36 (m, 6H, *o*-, *p*-); ¹³C NMR (67.80 MHz, ClCD₂CD₂Cl, 298 K, TMS): $\delta = 135.5$, 130.0, 128.3; ²⁹Si NMR (53.45 MHz, CD₃CN, 298 K, TMS): $\delta = -34.6$ (²*J*_{Si-P} = 2.9 Hz, $\Delta v_{1/2} = 1.0$ Hz); ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -651.6$ ($\Delta v_{1/2} = 3.9$ Hz); IR (KCl): v = 974, 965, 933, 881, 850, 840, 746, 712, 701, 638, 582, 563, 505, 480, 437 cm⁻¹; Raman: v = 1006, 983, 940, 915, 886, 858, 646, 626, 588, 573, 531, 518, 403, 341, 325, 306, 262, 204 cm⁻¹; positive ion MS (CSI, CH₃CN): *m/z*: 1469 [{(*n*-C₄H₉)₄N}₃PhSiO₂{WO(O₂)₂}₂]⁺; elemental analysis calcd (%) for C₄₄H₈₂N₂O₁₂SiW₂ ([(*n*-C₄H₉)₄N]₂[Ph₂SiO₂{WO(O₂)₂}₂]): C 43.07, H 6.74, N 2.28, Si 2.29, W 29.97; found: C 43.00, H 6.89, N 2.08, Si 2.00, W 27.28.

Synthesis Characterization of $[(n-C_4H_9)_4N]_2[\{WO(O_2)_2\}_2(\mu-O)].$ and The tetra-*n*-butylammonium salt derivative of $[{WO(O_2)_2}_2(\mu-O)]^{2^-}$ was synthesized according to the literature procedure.^{S8} Yield: 0.2 g (12%). ¹⁸³W NMR (11.20 MHz, CD₃CN, 298 K, Na₂WO₄): $\delta = -587.5$ ($\Delta v_{1/2} = 24.3$ Hz); IR (KCl): v = 962, 955, 848, 835, 655, 631, 615, 571, 554, 543, 524 cm⁻¹; Raman: v = 970, 961, 858, 844, 801, 786, 662, 624, 597, 572, 470, 328, cm^{-1} ; positive ion 308. 275. MS (CSI, CH₃CN): m/z: 259 1270.3 $[\{(n-C_4H_9)_4N\}_3\{WO(O_2)_2\}_2(\mu-O)]^+;$ elemental analysis calcd (%) for $C_{32}H_{72}N_2O_{11}W_2$ $([(n-C_4H_9)_4N]_2[\{WO(O_2)_2\}_2(\mu-O)])$: C 37.37, H 7.06, N 2.72, W 35.75; found: C 37.24, H 7.13, N 2.69, W 35.28.

Kinetic Derivation. The selenium-containing dinuclear peroxotungstate I reacts with a sulfide, leading to a sulfoxide and the subsequent peroxo species II (eqn (S1)):

$$\mathbf{I} + \mathbf{R}^{\mathbf{S}_{\mathbf{R}}} \xrightarrow{k_1} \mathbf{II} + \overset{\mathbf{O}}{\overset{\mathbf{S}_{\mathbf{R}}}_{\mathbf{R}}}$$
(S1)

Then, **I** is regenerated by the reaction of **II** with an H_2O_2 (eqn (S2)):

$$\mathbf{II} + \mathbf{H}_2 \mathbf{O}_2 \xrightarrow{k_2} \mathbf{I} + \mathbf{H}_2 \mathbf{O}$$
(S2)

From the steady-state approximation on I and II (eqns (S3) and (S4)) and the mass balance (eqn (S5)), the rate of the formation of sulfoxide can be expressed by (eqn (S6)):

$$\frac{d[\mathbf{I}]}{dt} = -k_1[\text{sulfide}][\mathbf{I}] + k_2[\mathbf{II}][\text{H}_2\text{O}_2] - k_{-2}[\mathbf{I}][\text{H}_2\text{O}] = 0$$
(S3)

$$\frac{d[\mathbf{II}]}{dt} = k_1[\text{sulfide}][\mathbf{I}] - k_2[\mathbf{II}][\text{H}_2\text{O}_2] + k_{-2}[\mathbf{I}][\text{H}_2\text{O}] = 0$$
(S4)

$$[\mathbf{I}]_{t} = [\mathbf{I}] + [\mathbf{II}]$$
(S5)

$$R_{0} = \frac{d[\text{sulfoxide}]}{dt} = \frac{k_{1}k_{2}[\mathbf{I}]_{t}[\text{sulfide}][\mathbf{H}_{2}\mathbf{O}_{2}]}{k_{1}[\text{sulfide}] + k_{2}[\mathbf{H}_{2}\mathbf{O}_{2}] + k_{-2}[\mathbf{H}_{2}\mathbf{O}]}$$
(S6)

When the k_1 , k_2 , and k_{-2} values in eqn (S6) are 9.3, 2.6, and 2.0×10^{-1} M⁻¹s⁻¹, respectively, the experimental data in Figures 4 and 5 could be fitted with a simulation curve calculated using eqn (S6). All the kinetic data were fitted with the Igor Pro ver. 5.05 program.

Data of Products

Methyl phenyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.64$ (s, 3H), 7.51–7.55 (m, 3H), 7.61–7.64 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 44.2, 124.3, 130.1, 131.6, 147.6;$ MS (70 eV, EI): m/z (%): 140 (100) [M^+], 125 (100), 124 (25), 109 (13), 97 (62), 94 (18), 91 (14), 78 (15), 77 (51), 65 (16), 51 (45), 50 (19), 45 (11).

Methyl phenyl sulfone: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 3.04$ (s, 3H), 7.59–7.70 (m, 3H), 7.91–7.93 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 44.4$, 128.0, 130.2, 134.5, 141.9; MS (70 eV, EI): m/z (%): 156 (36) [M^+], 141 (33), 94 (42), 77 (100), 51 (28).

Methyl *p***-methoxyphenyl sulfoxide:** ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 2.63 (s, 3H), 3.82 (s, 3H), 7.04–7.09 (m, 2H), 7.55–7.60 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 50.0, 58.7, 121.0, 129.2, 139.3, 165.3; MS (70 eV, EI): *m/z* (%): 170 (21) [*M*⁺], 155 (100), 154 (12), 139 (16), 123 (11).

Methyl *p***-methylphenyl sulfoxide:** ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 2.36 (s, 3H), 2.62 (s, 3H) 7.32–7.35 (m, 2H), 7.48–7.52 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 21.0, 43.4, 124.3, 130.6, 142.4, 124.8; MS (70 eV, EI): *m/z* (%): 154 (66) [*M*⁺], 139 (100), 138 (19), 111 (12), 91 (36), 77 (28), 67 (13), 65 (20), 63 (11).

p-Fluorophenyl methyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 2.66 (s, 3H), 7.23–7.33 (m, 2H), 7.65–7.71 (m, 2H); MS (70 eV, EI): *m/z* (%): 158 (58) [*M*⁺], 143 (100), 142 (18), 127 (16), 115 (41), 112 (14), 95 (27), 83 (19), 75 (23).

p-Chlorophenyl methyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 2.64 (s, 3H), 7.48–7.52 (m, 2H), 7.55–7.60 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 43.5, 126.1, 130.1, 137.1, 144.9; MS (70 eV, EI): *m/z* (%): 176 (17), 175 (11), 174 (48) [*M*⁺], 161 (34), 160 (28), 159 (100), 158 (54), 145 (12), 143 (39), 131 (36), 128 (18), 127 (12), 125 (12), 112 (15), 111 (22), 108 (32), 76 (11), 75 (35), 74 (17), 69 (14), 63 (11), 50 (24), 45 (32).

p-Bromophenyl methyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 2.63 (s, 3H), 7.48–7.53 (m, 2H), 7.63–7.68 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 43.4, 125.4, 126.3, 133.0, 145.5; MS (70 eV, EI): *m/z* (%): 281 (19), 220 (62) [*M*⁺], 218 (67), 205 (98), 204 (100), 203 (92), 202 (77), 189 (28), 187 (28), 177 (26), 175 (20), 171 (24), 131 (23), 122 (20), 108 (72), 96 (46), 86 (11), 82 (21), 77 (29), 76 (47), 75 (27), 74 (34), 69 (25), 63 (23), 59 (10), 58 (18), 56 (21), 51 (28), 50 (56), 45 (14), 43 (15).

4-(Methylsulfinyl)-acetophenone: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.57$ (s, 3H), 2.70 (s, 3H), 7.69–7.73 (m, 2H), 8.05–8.08 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 26.8, 43.2, 124.5, 129.6, 139.5, 151.1$ 198.7; MS (70 eV, EI): *m/z* (%): 182, (63) [*M*⁺], 168 (10), 167 (100), 152 (73), 151 (12), 139 (22), 124 (12), 121 (13), 76 (12), 50 (13).

4-Methyl sulfinyl benzonitrile: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 2.68 (s, 3H), 7.52–7.59 (m, 2H), 7.81–7.86 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 43.1, 114.5, 118.5, 125.0, 133.7, 151.7; MS (70 eV, EI): *m/z* (%): 165 (89) [*M*⁺], 150 (100), 149 (24), 122 (60), 119 (18), 116 (13), 102 (29), 90 (11), 76 (16), 75 (26), 51 (14), 50 (13), 45 (10).

p-Nitrophenyl methyl sulfoxides: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.73$ (s, 3H), 7.84 (d, J = 8.1 Hz, 2H), 8.34 (d, J = 7.7 Hz, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 43.8$, 125.1, 125.8, 150.1, 152.8, 150.3, 154.5; MS (70 eV, EI): *m/z* (%): 185 (100) [*M*⁺], 170 (45), 140 (22), 124 (12), 112 (14), 96 (10), 92 (10), 84 (10), 76 (17), 75 (11), 63 (14).

Ethyl phenyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 1.08$ (t, J = 7.3 Hz, 3H), 2.66–2.97 (m, 2H), 7.51–7.62 (m, 5H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 5.8$, 50.1, 124.8, 130.0, 131.7, 143.5; MS (70 eV, EI): m/z (%):154 (26) [M^+], 126 (64), 125 (17), 97 (12), 78 (100), 77 (21), 51 (22).

Benzyl methyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ 2.40 (t, J = 7.3 Hz, 3H), 3.8–4.0 (m, 2H), 7.2–7.4 (m, 5H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 37.3, 59.4, 128.7, 129.2, 130.8, 131.3; MS (70 eV, EI): m/z (%):154 (1) [M^+], 106 (1), 105 (2), 92 (8), 91 (100), 89 (2), 78 (1), 77 (7), 65 (10), 63 (2), 51 (5).

Diphenyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 7.43-7.53$ (m, 6H), 7.65–7.65 (m, 4H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 125.1$, 130.3, 132.0, 147.3; MS (70 eV, EI): m/z (%): 203 (15) $[M^++1]$, 202 (100) $[M^+]$, 186 (14), 185 (22), 174 (15), 173 (21), 155 (11), 154 (83), 153 (23), 152 (12), 141 (13), 125 (11), 109 (84), 97 (36), 77 (48), 65 (33).

Diphenyl sulfone: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 7.54-7.65$ (m, 6H), 7.93-7.95 (m, 4H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 128.3$, 130.5, 134.4, 142.5; MS (70 eV, EI): m/z (%): 218 (28) $[M^+]$, 153 (4), 152 (6), 127 (5), 126 (8), 125 (100), 97 (17), 77 (35), 51 (25).

Methyl *n***-octyl sulfoxide:** ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 0.97$ (t, J = 7.3 Hz, 3H), 1.60–1.69 (m, 12H), 2.40 (s, 3H), 2.61–2.68 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 14.1$, 22.9, 23.0, 29.0, 29.4, 29.5, 32.2, 38.1, 52.3; MS (70 eV, EI): m/z (%): 177 (10) [M^+ +1], 112 (11), 107 (17), 94 (13), 91 (13), 85 (11), 84 (17), 83 (27), 82 (13), 81 (100), 80 (25), 79 (11), 77 (10), 71 (41), 70 (20), 69 (24), 57 (63), 56 (29), 55 (30), 53 (10), 43 (48), 42 (10), 41 (50).

Methyl *n***-octyl sulfone:** ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 0.86$ (t, J = 5.9 Hz, 3H), 1.27–1.78 (m, 12H), 2.83 (s, 3H), 2.96–3.02 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 14.1, 22.9, 23.0, 28.7, 29.4, 29.5, 32.2, 40.5, 54.8;$ MS (70 eV, EI): m/z (%): 193 (3) [M^+ +1], 177 (6), 175 (4), 112 (11), 107 (11), 84 (12), 83 (21), 81 (100), 80 (24), 71 (49), 70 (17), 69 (21), 57 (64), 56 (23), 55 (34).

Ethyl *n***-propyl sulfoxide:** ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 1.03$ (t, J = 7.4 Hz, 3H), 1.22 (t, J = 7.5 Hz, 3H), 1.63–1.78 (m, 2H), 2.56–2.74 (m, 4H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 6.7$, 13.2, 16.6, 45.4, 53.2; MS (70 eV, EI): m/z (%): 120 (43) [M^+], 103 (13), 78 (100), 77 (12), 63 (51), 50 (21), 43 (82), 41 (58).

Diallyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 3.32-3.54$ (m, 4H), 5.31–5.40 (m, 4H), 5.77–5.92 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 54.6, 123.6, 127.1$; MS (70 eV, EI): m/z (%): 130 (16) [M^+], 113 (5), 100 (12), 89 (8), 82 (16), 81 (100), 80 (23), 79 (14), 73 (12), 68 (33), 67 (12).

Diallyl sulfones: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 3.74 (d, *J* = 7.0 Hz 2H), 5.39–5.47 (m, 2H), 5.79–5.95 (m, 1H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 56.6, 124.9, 125.8; MS (70 eV, EI): *m/z* (%): 146 (0.1) [*M*⁺], 105 (6), 97(2), 82 (2), 81 (20), 79 (2), 68 (6), 67 (100), 54 (49).

Di(2-hydroxylethyl) sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.93-3.09$ (m, 2H), 3.89 (t, J = 4.9 Hz); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 55.2$, 123.4, 127.7; MS (70 eV, EI): m/z (%): 138 (3) [M^+], 104 (3), 96 (4), 94 (70), 91 (3), 76 (100), 63 (44), 61 (14).

Phenyl vinyl sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 5.83 (d, *J* = 4.7 Hz, 1H), 6.09 (d, *J* = 8.1 Hz, 1H), 6.73 (d, *J* = 4.9, 8.2 Hz, 1H), 7.36–7.62 (m, 5H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 120.7, 125.2, 130.4, 132.0, 144.3, 144.7; MS (70 eV,

EI): *m/z* (%): 152 (19) [*M*⁺], 136 (8), 124 (13), 123 (16), 109 (31), 104 (100), 97 (14), 91 (11), 78 (42), 77 (31), 65 (15), 51 (32), 50 (11).

Phenyl vinyl sulfone: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 6.10$ (d, J = 5.0 Hz, 1H), 6.37 (d, J = 8.2 Hz, 1H), 6.80 (d, J = 5.0, 8.2 Hz, 1H), 7.62–7.73 (m, 2H), 7.85–7.89 (m, 3H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 128.3$, 129.0, 130.3, 134.6, 139.2, 140.5; MS (70 eV, EI): m/z (%): 168 (21) $[M^+]$, 125 (100), 97 (13), 78 (11), 77 (100), 65 (12), 51 (35).

Tetrahydrothiophene sulfoxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): δ = 1.91–2.22 (m, 4H), 2.7–2.90 (m, 4H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): δ = 25.9, 54.9; MS (70 eV, EI): *m/z* (%): 104 (61) [*M*⁺], 87 (5), 76 (3), 63 (29), 60 (4), 59 (4), 56 (7), 55 (100).

2-Mehytltetrahydrothiophene 1-oxide: ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): *cis*-isomer: $\delta = 11.6$, 25.3, 32.9, 55.3, 58.9; *trans*-isomer: $\delta = 15.0$, 25.2, 34.5, 53.0, 65.1; MS (70 eV, EI): m/z (%): 118 (83) $[M^+]$, 101, (19), 87 (8), 69 (100), 68 (24), 67 (23), 63 (74), 59 (12), 56 (30), 55 (32).

Tetrahydrothiopyran 1-oxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 1.48-1.66$ (m, 4 H), 2.00–2.17 (m, 2 H), 2.60–2.87 (m, 4 H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 19.4$, 25.0, 52.4; MS (70 eV, EI): m/z (%): 118 (77) [M^+], 101 (24), 90 (19), 69 (100), 68 (22), 67 (22), 63 (68), 56 (21), 55 (32).

Dibenzothiophene 5,5-dioxide: ¹H NMR (270 MHz, CDCl₃, 298 K, TMS): δ = 7.81 (d, 2H, J = 8.1 Hz), 7.78 (d, 2H, J = 8.9 Hz), 7.62 (dt, 2H, J = 7.4 and 0.8 Hz), 7.51 (dt, 2H, J = 7.6 and 0.5 Hz); ¹³C{¹H} NMR (67.5 MHz, CDCl₃, 298 K, TMS): δ = 122.1, 122.7, 130.9, 132.1, 134.4, 138.3; MS (70 eV, EI): *m/z* (%): 217 (15), 216 (100), 188 (10), 187 (36), 171 (13), 168 (32), 160 (27), 150 (14), 144 (17), 139 (25), 136 (31), 115 (18), 104 (15), 79 (16), 75 (10), 63 (12).

1,4-Oxathiane 4-oxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.51-2.65$ (m, 2H), 2.88–2.98 (m, 2H), 3.68–3.76 (m, 2H), 4.15–4.24 (m, 2H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 59.9$, 47.0; MS (70 eV, EI): m/z (%):120 (40) $[M^+]$, 104 (2), 94 (5), 93 (3), 92 (100), 77 (27), 76 (21), 63 (15), 62 (5), 61 (4), 60 (3), 59 (24), 58 (3), 57 (3), 50 (8). **1,3-Dithiolane 1-oxide:** ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.75-2.81$ (m, 1H), 3.35–3.45 (m, 2H), 3.69–3.92 (m, 3H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 55.4$, 57.5, 78.9; MS (70 eV, EI): m/z (%): 124 (10), 123 (6), 122 (100) $[M^+]$, 94 (8), 78 (8), 77 (5), 76 (11), 74 (6), 73 (29), 63 (8), 60 (33), 59 (17), 58 (5).

1,3-Dithiane 1-oxide: ¹H NMR (270 MHz, CD₃CN, 298 K, TMS): $\delta = 2.00-2.14$ (m, 1H), 2.40–2.67 (m, 4H), 3.16–3.25 (m, 1H), 3.64 (d, J = 12.7 Hz, 1H), 3.97 (d, J = 12.7 Hz, 1H); ¹³C{¹H} NMR (67.5 MHz, CD₃CN, 298 K, TMS): $\delta = 52.8$, 50.1, 28.3, 27.4; MS (70 eV, EI): *m/z* (%):138 (9), 137 (8), 136 (100) [*M*⁺], 119 (12), 106 (25), 90 (50), 89 (6), 87 (50), 74 (11), 73 (39), 72 (8), 63 (9), 62 (5), 61 (31), 60 (27), 59 (14), 57 (5).

Thianthrene 5-oxide (SSO): ¹H NMR (270 MHz, CDCl₃, 298 K, TMS): δ 7.44 (dt, 2H, J = 1.2, 7.6 Hz), 7.54 (dt, 2H, J = 1.2, 7.6 Hz), 7.62 (dd, 2H, J = 1.2, 7.6 Hz), 7.92 (dd, 2H, J = 1.2, 7.6 Hz); ¹³C {¹H} NMR (67.5 MHz, CDCl₃, 298 K, TMS): $\delta = 124.3$, 128.2, 128.8, 129.7, 141.2; elemental analysis calcd (%) for C₁₂H₈OS₂: C 62.04, H 3.47; found: C 61.92, H 3.65.

Thianthrene 5,5-dioxide (SSO₂): ¹H NMR (270 MHz, CDCl₃, 298 K, TMS): δ = 7.50–7.59 (m, 4H), 7.63–7.68 (m, 2H), 8.19–8.25 (m, 2H); ¹³C {¹H} NMR (67.5 MHz, CDCl₃, 298 K, TMS): δ = 125.5, 127.7, 128.7, 132.0, 135.1, 135.3.

cis-Thianthrene 5,10-dioxide (*cis*-SOSO): ¹H NMR (270 MHz, CDCl₃, 298 K, TMS): δ = 7.69–7.76 (m, 4H), 8.04–8.11 (m, 4H); ¹³C {¹H} NMR (67.5 MHz, CDCl₃, 298 K, TMS): δ = 123.7, 130.8, 138.4.

trans-Thianthrene 5,10-dioxide (*trans*-SOSO): ¹H NMR (270 MHz, CDCl₃, 298 K, TMS): δ = 7.63–7.70 (m, 4H), 8.08–8.14 (m, 4H); ¹³C {¹H} NMR (67.5 MHz, CDCl₃, 298 K, TMS): δ = 127.8, 131.4, 142.8.

Thianthrene 5,5,10-trioxide (SOSO₂): ¹H NMR (270 MHz, CDCl₃, 298 K, TMS): $\delta = 7.67-7.73$ (m, 2H), 7.73-7.84 (m, 2H), 8.12-8.21 (m, 4H); ¹³C {¹H} NMR (67.5 MHz, CDCl₃, 298 K, TMS): $\delta = 125.0$, 126.1, 130.7, 133.0, 134.1, 147.8.

References

- S1 K. Kamata, T. Hirano, S. Kuzuya and N. Mizuno, *J. Am. Chem. Soc.*, 2009, **131**, 6997; K. Kamata, T. Hirano and N. Mizuno, *Chem. Commun.*, 2009, 3958; K. Kamata, R. Ishimoto, T. Hirano, S. Kuzuya, K. Uehara and N. Mizuno, *Inorg. Chem.*, 2010, **49**, 2471.
- S2 J.-Y. Piquemal, L. Salles, G. Chottard, P. Herson, C. Ahcine, J.-M. Brégeault, *Eur. J. Inorg. Chem.*, 2006, 939.
- S3 J.-Y. Piquemal, L. Salles, C. Bois, F. Robert, J.-M. Brégeault, C. R. Acad. Sci., Série II, 1994, 1481.
- S4 C. Venturello, R. D'Aloisio, J. C. J. Bart, M. Ricci, J. Mol. Catal., 1985, 32, 107.
- S5 L. Salles, F. Robert, V. Semmer, Y. Jeannin, J.-M. Brégeault, *Bull. Soc. Chim. Fr.*, 1996, **133**, 319.
- S6 L. Salles, C. Aubry, R. Thouvenot, F. Robert, C. Dorémieux-Morin, G. Chottard, H. Ledon, Y. Jeannin, J.-M. Brégeault, *Inorg. Chem.*, 1994, **33**, 871.
- S7 J.-Y. Piquemal, C. Bois, J.-M. Brégeault, Chem. Commun., 1997, 473.
- S8 K. Kamata, S. Kuzuya, K. Uehara, S. Yamaguchi, N. Mizuno, *Inorg. Chem.*, 2007, 46, 3768.

		5			Ō	O O
ſi	∕	catalys	st		~S+	S_
		CH ₃ CN, 293 I	<, 30 min		•	
entry	catalyst		yield (%)	selectivity (%)		$R_0 (\mathrm{mM} \mathrm{min}^{-1})$
				sulfoxide	sulfone	-
1	Ι		90	95	5	25.0
2	without		<1	_	_	_
3^b	H_2SeO_4		1	99	1	< 0.1
4 ^{<i>c</i>}	SeO ₂		12	93	7	0.4
5	H_2WO_4		1	44	56	< 0.1
6	$H_2SeO_4 + H_2V$	VO ₄	4	92	8	0.2
7	(TBA) ₂ [{WO	$(O_2)_2\}_2(\mu-O)]$	45	87	13	3.1
8	$(TBA)_2[SO_4{$	$WO(O_2)_2\}_2]$	73	92	8	16.0
9^d	(THA) ₃ [AsO ₄	$\{WO(O_2)_2\}_4]$	83	92	8	15.8
10^d	(THA) ₃ [PO ₄ {	$WO(O_2)_2\}_4]$	61	92	8	7.7
11	(TBA) ₂ [HAsC	$O_4 \{WO(O_2)_2\}_2]$	61	87	13	4.1
12	(TBA) ₂ [HPO ₄	$\{WO(O_2)_2\}_2]$	52	89	11	3.7
13	(TBA) ₂ [Ph ₂ Si	$O_2\{WO(O_2)_2\}_2]$	11	86	14	0.5

Table S1 Effect of catalysts on oxidation of thioanisole with $H_2O_2^a$

^{*a*} Reaction conditions: Catalyst (W: 0.2 mol% relative to thioanisole and H₂O₂), thioanisole (1 mmol), 30% aqueous H₂O₂ (1 mmol), CH₃CN (6 mL), 293 K, 30 min. Yield was determined by GC. R_0 values were determined from the reaction profiles at low conversions ($\leq 20\%$) of both thioanisole and H₂O₂. ^{*b*} H₂SeO₄ (0.1 mol%). ^{*c*} SeO₂ (0.1 mol%). ^{*d*} THA = [(*n*-C₆H₁₃)₄N]⁺.

	PS. +	H_2O_2	>		0=0	+ H ₂ O	
	Γ ₁ Γ ₂	L - L	CH ₃ CN, 293 K		$R_1 \sim R_2$	_	
entry	substra	te P-	time (min)	yield (%)	selectivity to sulfoxide(%)	H ₂ O ₂ efficiency (%)	
1		1 <u>12</u>	120	00	00		
1	PII	Ma	240	99	90	99	
2		Me	240	98	93	98	
3	$4-CH_3OC_6H_4$	Me	120	>99	90	>99	
4	$4-CH_3C_6H_4$	Me	120	98	93	98	
5	$4\text{-FC}_6\text{H}_4$	Me	120	>99	88	>99	
6	$4-ClC_6H_4$	Me	120	99	87	99	
7	$4-BrC_6H_4$	Me	120	99	87	99	
8	$4\text{-}\mathrm{COMeC_6H_4}$	Me	120	99	85	99	
9	$4-CNC_6H_4$	Me	200	>99	81	>99	
10	$4-NO_2C_6H_4$	Me	210	>99	78	>99	
11^{b}	$4-NO_2C_6H_4$	Me	800	96	99	96	
12	Ph	Et	100	>99	82	>99	
13 ^b	Ph	Et	100	98	96	98	
14	Bn	Me	120	>99	94	>99	
15	Ph	Ph	210	97	81	97	
16 ^{<i>c</i>}	Ph	Ph	720	98	85	98	
17^d	Ph	Ph	120	>99	98	>99	
18	$n-C_8H_{17}$	Me	120	96	94	96	
19 ^{<i>d</i>}	<i>n</i> -C ₃ H ₇	Et	120	98	95	98	
20	<i>n</i> -C ₃ H ₇	Et	60	97	90	97	
21	allyl	allyl	120	>99	86	>99	
22^b	allyl	allyl	150	>99	94	>99	
23^d	allyl	allyl	90	99	99	99	
24	$\mathrm{HOC}_{2}\mathrm{H}_{4}$	$\mathrm{HOC}_{2}\mathrm{H}_{4}$	60	95	99	95	
25	Ph	vinyl	240	95	86	95	
26 ^{<i>d</i>}	Ph	vinyl	330	97	95	97	

Table S2Oxidation of various acyclic sulfides with 30% aqueous H_2O_2 catalyzed by I^a IO

^{*a*} Reaction conditions: **I** (0.1 mol% relative to substrate and H₂O₂), sulfide (1 mmol), 30% aqueous H₂O₂ (1 mmol), CH₃CN (6 mL), 293 K. Yield and selectivity were determined by GC and NMR. Remaining H₂O₂ after reaction was estimated by potential difference titration of Ce³⁺/Ce⁴⁺ (0.1 M of aqueous Ce(NH₄)₄(SO₄)₄·2H₂O. Yield (%) = (sulfoxide (mol) + sulfone (mol) × 2)/H₂O₂ used (mol) × 100. H₂O₂ efficiency (%) = (sulfoxide (mol) + sulfone (mol) × 2)/consumed H₂O₂ (mol) × 100. ^{*b*} I (0.01 mol%), CH₃CN (1 mL). ^{*c*} I (0.02 mol%), CH₃CN (1 mL). ^{*d*} 30% aqueous H₂O₂ (2 mmol), 323 K.

Α				
atom	x (Å)	y (Å)	z (Å)	
0	-1.18529	-0.50772	-0.62061	
0	-3.09479	0.564621	1.17572	
0	-2.46755	1.710327	-1.40224	
0	-2.43366	2.841782	-0.44725	
0	-0.92539	2.291931	1.719559	
0	-0.24229	0.993698	1.678619	
0	1.317535	-0.81384	0.423508	
0	3.245773	1.009048	-0.56622	
0	2.6232	0.666016	2.23494	
0	2.606995	2.128464	2.00177	
0	1.100357	2.795883	-0.13286	
0	0.400436	1.671921	-0.76569	
0	0.569595	-2.19058	-1.86636	
Se	0.059036	-1.6969	-0.38524	
W	-1.744	1.206207	0.332855	
W	1.899857	1.139587	0.491348	
0	-0.46275	-2.87543	0.633026	

 Table S3
 Cartesian coordinates (in Å) of the calculated structures

Charge = -2; E = -1197.99074 hartree.

В				
atom	x (Å)	y (Å)	z (Å)	
0	0.004868	-0.087006	2.656113	
0	0.004868	2.796204	2.656113	
0	-2.523773	1.127975	2.656113	
0	-2.572662	2.189880	1.600571	
0	-0.021255	1.495209	0.181183	
0	1.104782	-1.068832	0.321472	
0	-0.510773	-2.079575	-1.768738	
0	1.191132	0.214996	-2.098953	
0	-0.123077	0.609268	-2.656128	
0	-2.153442	0.062851	-0.903564	
0	-1.684479	-0.500168	0.369278	
0	0.377579	-2.796204	2.387146	
Se	1.062851	-1.349579	2.024643	
W	-0.783691	1.527939	1.786942	
W	-0.307587	-0.515839	-1.085632	
0	2.572662	-1.088455	2.617554	

Table S3 (Continued)

Charge = -2; E = -1122.83923274 hartree.

TS1							
atom	x (Å)	y (Å)	z (Å)	displacement vector of the imaginary frequency mode atom			
				Х	у	Z	
0	2.410932	0.522364	0.018467	-0.05	-0.01	0.05	
0	1.658988	2.786097	-1.255406	0.00	0.01	0.00	
0	1.147585	2.510844	1.555270	0.00	-0.02	0.00	
0	-0.118853	3.010265	0.973979	0.01	-0.01	0.00	
0	-0.891264	1.640146	-1.212806	0.02	-0.01	0.00	
0	-0.083987	0.448653	-1.517136	0.02	-0.03	0.06	
0	1.166511	-1.876033	-0.425450	0.00	0.05	0.04	
0	-1.042322	-2.722839	1.164591	0.02	-0.01	-0.01	
0	-1.015812	-2.325989	-1.721182	0.00	0.00	0.02	
0	-2.255664	-1.709423	-1.229990	-0.01	0.01	0.03	
0	-0.087400	0.014877	1.047932	-0.22	0.14	0.18	
0	2.824954	-1.564681	1.819551	-0.01	0.00	0.00	
Se	2.628983	-1.187023	0.231888	0.02	-0.01	0.00	
W	0.775364	1.748297	-0.203852	0.01	0.02	-0.01	
W	-0.782226	-1.457556	0.031120	-0.01	-0.04	-0.03	
0	3.851153	-1.656266	-0.764979	0.00	0.01	0.00	
0	-1.930923	-0.025467	0.840844	0.81	0.06	0.11	
С	-3.843077	1.728738	1.443915	0.01	0.00	-0.01	
Se	-3.989254	0.162575	0.533153	-0.31	0.03	-0.02	
С	-3.967935	0.789275	-1.174586	-0.06	0.03	-0.01	
Н	-3.859607	1.483902	2.508123	-0.01	0.00	0.00	
Н	-4.676188	2.396229	1.200633	0.11	0.15	0.07	
Н	-2.874601	2.172858	1.197200	0.05	-0.07	0.03	
Н	-3.951208	-0.086663	-1.824516	-0.09	0.04	-0.02	
Н	-3.036972	1.344423	-1.319171	-0.01	-0.05	0.01	
Н	-4.856102	1.403556	-1.360231	0.04	0.12	-0.17	

Table S3	(Continued)
TS1	

Charge = -2; E = -1675.9902245 hartree.

TS2						
atom	x (Å)	y (Å)	z (Å)	displacement vect	tor of the imaginary	y frequency
			_	mode atom		
				Х	у	Z
0	2.705419	0.517712	-0.269942	-0.05	-0.01	0.05
0	1.801397	2.438047	-1.946321	0.00	0.01	-0.01
0	1.439550	2.749359	0.887151	0.00	-0.02	0.00
0	0.126819	3.075674	0.284802	0.01	-0.01	0.00
0	-0.695502	1.243291	-1.511269	0.02	-0.01	0.00
0	0.150319	0.042588	-1.603332	0.02	-0.01	0.06
0	1.546104	-1.956460	-0.072610	0.00	0.06	0.03
0	-0.593413	-2.489273	1.733217	0.02	-0.02	-0.01
0	-0.647269	-2.725306	-1.170312	0.00	0.00	0.02
0	-1.893348	-2.047391	-0.791534	-0.01	0.01	0.04
0	0.288995	0.176063	0.990976	-0.22	0.17	0.15
0	3.271370	-1.064030	1.956594	-0.01	0.00	0.00
Se	3.002446	-1.084405	0.335834	0.02	0.00	0.00
W	1.016625	1.618241	-0.652945	0.00	0.02	-0.02
W	-0.399162	-1.493951	0.347002	0.00	-0.05	-0.02
0	4.203836	-1.737559	-0.577826	0.00	0.00	-0.01
0	-1.559294	0.064345	0.872738	0.83	0.07	0.07
С	-4.942273	-1.922755	-1.967923	-0.01	-0.01	-0.02
С	-5.047575	-0.659948	-1.534784	-0.01	0.00	-0.02
С	-3.868802	0.194818	-1.177430	-0.05	0.02	0.00
S	-3.625393	0.249857	0.661983	-0.31	0.05	0.00
0	-3.319045	2.058783	0.898861	0.03	-0.01	-0.02
0	-3.197077	2.398571	2.353656	0.01	-0.01	-0.01
0	-2.028415	2.698629	2.932088	-0.01	0.01	0.02
Н	-5.826658	-2.510901	-2.204924	-0.01	-0.03	0.02
Н	-3.968644	-2.398313	-2.058534	-0.01	0.00	-0.04
Н	-6.034825	-0.213156	-1.401099	-0.02	-0.03	0.03
Н	-4.001420	1.230350	-1.504883	-0.10	0.01	-0.05
Н	-2.933767	-0.192789	-1.585344	-0.05	0.06	-0.02
Н	-4.162475	2.583350	0.432842	0.13	0.15	-0.02
Н	-2.387871	2.267531	0.365695	0.07	-0.05	0.05
Н	-4.115650	2.372250	2.943194	0.00	-0.04	-0.02
Н	-1.977785	2.932808	3.993665	-0.03	0.00	0.02
Н	-1.100818	2.698411	2.363606	-0.01	0.05	0.04

Table S3 (Continued)TS2

Charge = -2; E = -1830.786619 hartree.

TS3						
atom	x (Å)	y (Å)	z (Å)	displacement vect	tor of the imaginary	r frequency
				mode atom		
				Х	у	Z
0	3.162309	0.489702	-0.197616	-0.04	-0.01	-0.02
0	3.629778	-1.893904	1.056583	0.00	0.00	0.00
0	2.855387	-1.814118	-1.712462	-0.01	0.01	0.00
0	2.004031	-2.854438	-1.093400	0.00	0.01	0.00
0	0.821474	-2.003393	1.179673	0.01	0.01	0.00
0	1.050856	-0.588073	1.506114	0.00	0.01	-0.04
0	1.022151	2.056737	0.453366	0.02	-0.03	-0.03
0	-1.512580	1.798497	-0.813851	0.02	0.02	0.02
0	-0.927937	1.411030	2.012431	0.00	0.00	-0.02
0	-1.783406	0.291789	1.604531	-0.01	-0.01	-0.01
0	-1.032372	-0.991805	-0.702853	0.68	0.35	-0.14
0	0.592422	-0.192548	-1.008700	-0.14	-0.17	-0.14
0	2.400407	2.524075	-1.944340	0.00	-0.01	0.00
Se	2.569280	2.110179	-0.364327	0.01	0.01	0.00
W	2.308406	-1.354466	0.098309	0.01	-0.01	0.01
W	-0.539153	0.790543	0.185350	-0.02	0.02	0.02
0	3.532358	3.090976	0.536226	0.00	0.00	0.00
С	-2.139250	-2.221840	0.127105	-0.41	-0.25	0.08
С	-3.090622	-1.691949	-0.719873	-0.10	-0.15	0.08
С	-4.003386	-0.567651	-0.365413	-0.02	-0.03	0.00
S	-5.774978	-1.157118	-0.365536	-0.01	0.01	0.00
С	-6.615010	0.475172	-0.136945	-0.01	0.00	0.00
С	-8.049957	0.387385	-0.554217	0.00	0.01	0.00
С	-9.097307	0.544272	0.264859	0.00	0.00	0.00
Н	-1.581014	-3.106753	-0.152969	0.00	0.06	-0.08
Н	-2.086935	-1.928802	1.170309	-0.11	-0.03	0.00
Η	-3.150704	-2.069577	-1.737977	-0.03	-0.04	0.03
Η	-3.934961	0.232924	-1.109779	0.03	-0.05	-0.01
Η	-3.759824	-0.157983	0.616559	-0.03	-0.02	0.00
Η	-6.080581	1.197818	-0.765194	-0.01	0.00	0.00
Н	-6.526637	0.796914	0.905484	-0.01	0.01	0.00
Н	-8.222908	0.164235	-1.607380	0.00	0.00	0.00
Н	-10.119472	0.468690	-0.097320	-0.01	-0.01	0.00
Н	-8.963372	0.752109	1.324426	0.00	0.00	0.00

Table S3	(Continued)
те2	

Charge = -2; E = -1830.777874 hartree.

Figure S1 Transition-state structures and the corresponding activation barriers for the oxidation of dimethyl sulfide (bond lengths in Å). Orange, gray, red, black, and light blue balls represent selenium, tungsten, oxygen, carbon, and hydrogen atoms, respectively.

Figure S2 Reaction profiles for the (a) catalytic and (b, c, and d) stoichiometric oxidation of diphenyl sulfide by **I**. (a) Reaction conditions: **I** (0.31 mM), diphenyl sulfide (3.12 mM), 30% aqueous H_2O_2 (3.12 mM) CH₃CN (3.2 mL), 233 K. (b) Reaction conditions: **I** (0.31 mM), diphenyl sulfide (3.12 mM), CH₃CN (3.2 mL), 233 K. (c) After 4 min (i.e., one equivalent of the active oxygen with respect to **I** was transferred), 30% aqueous H_2O_2 (3.12 mM) was added as indicated by an arrow. (d) After 100 min (i.e., two equivalents of the active oxygen with respect to **I** were transferred), 30% aqueous H_2O_2 (3.12 mM) was added as indicated by an arrow. Yield and selectivity were determined by LC. [Products] (mM) = ([sulfoxide] + 2×[sulfone]) (mM).

Figure S3 Dependence of the reaction rate on the concentration of I: I (0.04–0.50 mM), thioanisole (50 mM), H₂O₂ (50 mM), H₂O (250 mM), CH₃CN (6 mL), 273 K. R_0 values were determined from the reaction profiles at low conversions (<20%) of both thioanisole and H₂O₂. Slope = 1.08 (R² = 0.99).