Water-Induced Reversible Structural Phase Transformation with Chromotropism in Metal Supramolecular Frameworks Containing Aminopyrazine and Sulfate Anions

Jaursup Boonmak, ^a Motohiro Nakano, ^b Narongsak Chaichit, ^c Chaveng Pakawatchai, ^d

and Sujittra Youngme,^{*, a}

* Correspondence author: E-mail: sujittra@kku.ac.th; fax: +66-43-202-373.

^{*a*} Khon Kaen University.

^b Osaka University.

^{*c*} Thammasat University Rangsit.

^{*d*} Prince of Songkla University.

Compound 1 ^{<i>a</i>}			
Co1–O9	2.0436(12)	Co2–O3	2.0691(14)
Co1–O9 ⁱ	2.0436(12)	Co2–O3 ⁱⁱ	2.0691(14)
Co1–O1 ⁱ	2.0968(13)	Co2–O2 ⁱⁱ	2.1030(14)
Co1-O1	2.0968(13)	Co2-O2	2.1030(14)
Co1–N1 ⁱ	2.2071(16)	Co2–O4 ⁱⁱ	2.1113(15)
Co1–N1	2.2071(15)	Co2–O4	2.1113(15)
09–Co1–O9 ⁱ	180	O3-Co2-O3 ⁱⁱ	180
09–Co1–O1 ⁱ	92.49(5)	O3-Co2-O2 ⁱⁱ	91.09(6)
09 ⁱ -Co1-O1 ⁱ	87.51(5)	O3 ⁱⁱ -Co2-O2 ⁱⁱ	88.91(6)
O9-Co1-O1	87.51(5)	O3-Co2-O2	88.91(6)
09 ⁱ -Co1-O1	92.49(5)	O3 ⁱⁱ -Co2-O2	91.09(6)
01 ⁱ -Co1-O1	180	O2 ⁱⁱ –Co2–O2	180
O9–Co1–N1 ⁱ	88.62(5)	O3-Co2-O4 ⁱⁱ	87.33(7)
O9 ⁱ -Co1-N1 ⁱ	91.38(5)	O3 ⁱⁱ -Co2-O4 ⁱⁱ	92.67(7)
O1 ⁱ -Co1-N1 ⁱ	89.83(6)	O2 ⁱⁱ -Co2-O4 ⁱⁱ	90.06(6)
O1–Co1–N1 ⁱ	90.17(6)	O2-Co2-O4 ⁱⁱ	89.94(6)
O9-Co1-N1	91.38(5)	O3-Co2-O4	92.67(7)
O9 ⁱ -Co1-N1	88.62(5)	O3 ⁱⁱ -Co2-O4	87.33(7)
O1 ⁱ -Co1-N1	90.17(6)	O2 ⁱⁱ -Co2-O4	89.94(6)
01-Co1-N1	89.83(6)	O2-Co2-O4	90.06(6)
N1 ⁱ -Co1-N1	180	O4 ⁱⁱ -Co2-O4	180
	Com	pound 2^a	
Fe1–O9 ⁱ	2.0867(13)	Fe2–O3	2.1070(15)
Fe1–O9	2.0867(13)	Fe2–O3 ⁱⁱ	2.1070(15)

Table S1. Selected bond lengths (Å) and angles (deg) for compounds 1–4.

Fe1–O1 ⁱ	2.0977(12)	Fe2–O2 ⁱⁱ	2.1139(14)	
Fe1–O1	2.0977(12)	Fe2–O2	2.1139(14)	
Fe1-N1 ⁱ	2.2492(15)	Fe2–O4 ⁱⁱ	2.1522(14)	
Fe1–N1	2.2492(15)	Fe2–O4	2.1522(14)	
O9 ⁱ -Fe1-O9	180	O3–Fe2–O3 ⁱⁱ	180	
O9 ⁱ -Fe1-O1 ⁱ	87.44(6)	O3–Fe2–O2 ⁱⁱ	90.47(6)	
O9–Fe1–O1 ⁱ	92.56(6)	O3 ⁱⁱ -Fe2-O2 ⁱⁱ	89.53(6)	
O9 ⁱ -Fe1-O1	92.56(6)	O3-Fe2-O2	89.53(6)	
O9-Fe1-O1	87.44(6)	O3 ⁱⁱ –Fe2–O2	90.47(6)	
O1 ⁱ -Fe1-O1	180	O2 ⁱⁱ –Fe2–O2	180	
O9 ⁱ -Fe1-N1 ⁱ	92.22(5)	O3–Fe2–O4 ⁱⁱ	86.15(6)	
O9–Fe1–N1 ⁱ	87.78(5)	O3 ⁱⁱ -Fe2-O4 ⁱⁱ	93.85(6)	
O1 ⁱ -Fe1-N1 ⁱ	88.56(6)	O2 ⁱⁱ -Fe2-O4 ⁱⁱ	89.65(6)	
O1–Fe1–N1 ⁱ	91.44(6)	O2–Fe2–O4 ⁱⁱ	90.35(6)	
O9 ⁱ -Fe1-N1	87.78(5)	O3-Fe2-O4	93.85(6)	
O9-Fe1-N1	92.22(5)	O3 ⁱⁱ –Fe2–O4	86.15(6)	
O1 ⁱ -Fe1-N1	91.44(6)	O2 ⁱⁱ –Fe2–O4	90.35(6)	
O1-Fe1-N1	88.56(6)	O2-Fe2-O4	89.65(6)	
N1 ⁱ -Fe1-N1	180	O4 ⁱⁱ -Fe2-O4	180	
Compound 3 ^{<i>a</i>}				
Co1–O9 ⁱ	2.0596(13)	Fe1–O3 ⁱⁱ	2.0904(15)	
Co1-O9	2.0596(13)	Fe1–O3	2.0904(15)	
Co1–O1 ⁱ	2.0974(13)	Fe1–O2	2.1116(15)	
Co1-O1	2.0974(13)	Fe1–O2 ⁱⁱ	2.1116(14)	
Co1–N1	2.2237(14)	Fe1–O4 ⁱⁱ	2.1375(15)	
Co1–N1 ⁱ	2.2237(14)	Fe1–O4	2.1375(15)	
O9 ⁱ -Co1-O9	180	O3 ⁱⁱ –Fe1–O3	180	

O9 ⁱ -Co1-O1 ⁱ	87.47(6)	O3 ⁱⁱ -Fe1-O2	90.71(6)
09–Co1–O1 ⁱ	92.53(6)	O3-Fe1-O2	89.29(6)
O9 ⁱ -Co1-O1	92.53(6)	O3 ⁱⁱ -Fe1-O2 ⁱⁱ	89.29(6)
O9-Co1-O1	87.47(6)	O3–Fe1–O2 ⁱⁱ	90.71(6)
O1 ⁱ -Co1-O1	180	O2–Fe1–O2 ⁱⁱ	180
O9 ⁱ -Co1-N1	88.30(5)	O3 ⁱⁱ -Fe1-O4 ⁱⁱ	93.39(7)
O9-Co1-N1	91.70(5)	O3–Fe1–O4 ⁱⁱ	86.61(7)
O1 ⁱ -Co1-N1	90.60(6)	O2–Fe1–O4 ⁱⁱ	90.19(6)
O1-Co1-N1	89.40(6)	O2 ⁱⁱ -Fe1-O4 ⁱⁱ	89.81(6)
O9 ⁱ -Co1-N1 ⁱ	91.70(5)	O3 ⁱⁱ –Fe1–O4	86.61(7)
O9–Co1–N1 ⁱ	88.30(5)	O3-Fe1-O4	93.39(7)
O1 ⁱ -Co1-N1 ⁱ	89.40(6)	O2-Fe1-O4	89.81(6)
O1–Co1–N1 ⁱ	90.60(6)	O2 ⁱⁱ –Fe1–O4	90.19(6)
N1-Co1-N1 ⁱ	180	O4 ⁱⁱ –Fe1–O4	180
Compound 4 ^b			
Cd1–O2 ⁱ	2.297(5)	Cd1–N1 ⁱⁱ	2.315(4)
Cd1–O4	2.303(6)	Cd1–O2	2.587(5)
Cd1–N1	2.315(4)	O2–Cd1 ⁱ	2.297(5)
O2 ⁱ -Cd1-O4	165.5(2)	O2 ⁱ -Cd1-O2	68.7(2)
O2 ⁱ -Cd1-N1	91.0(1)	O4-Cd1-O2	125.8(2)
O4-Cd1-N1	90.55(10)	N1-Cd1-O2	84.68(10)
O2 ⁱ -Cd1-N1 ⁱⁱ	91.0(1)	N1 ⁱⁱ -Cd1-O2	84.68(10)
O4–Cd1–N1 ⁱⁱ	90.55(10)	Cd1 ⁱ -O2-Cd1	111.3(2)
N1-Cd1-N1 ⁱⁱ	167.6(2)		

^{*a*} Symmetry codes for 1–3: (i) –*x*, *1*–*y*, *1*–*z*; (ii) –*x*, 2–*y*, –*z*. ^{*b*}For 4: (i) *1*–*x*, –*y*, *1*–*z*; (ii) *x*, –*y*, *z*.

D–H…A	H…A/Å	D…A /Å	D–H····A /°
	Compour	nd 1^a	
O1–H1A····O6 ⁱ	1.84	2.764(2)	169
O1–H1B…O7 ⁱⁱ	1.88	2.771(2)	162
O2-H2A···O8 ⁱⁱⁱ	1.79	2.733(2)	172
O2–H2B…O7	1.87	2.815(2)	171
N3–H3A····O6 ^{iv}	2.19	3.034(2)	169
N3–H3B…O3 ^v	2.61	3.347(3)	145
N3–H3B…O4 ⁱⁱ	2.52	3.277(2)	147
O3-H3C…O10 ^{vi}	1.81	2.732(2)	167
O3–H3D····O5 ^{vii}	1.81	2.739(2)	171
O4–H4A…O5	1.80	2.741(2)	172
O4–H4B…O10 ^{viii}	1.85	2.780(2)	167
O9–H9····N2 ^{viii}	1.86	2.792(2)	173
O9–H9A…O6	1.83	2.755(2)	169
O10–H10…O7	1.84	2.779(2)	169
O10–H10A…O8 ^{vi}	1.78	2.704(2)	165
	Compour	nd 2^a	
O1–H1A····O6 ⁱ	1.87	2.748(2)	170
O1–H1B…O7 ⁱⁱ	1.88	2.760(2)	174
O2-H2A···O8 ⁱⁱⁱ	1.81	2.725(2)	170
O2–H2B…O7	1.90	2.811(2)	167
N3–H3A····O6 ^{iv}	2.18	3.030(2)	169
N3–H3B····O3 ^v	2.57	3.312(3)	145
N3–H3B…O4 ⁱⁱ	2.54	3.283(2)	147
O3–H3C…O10 ^{vi}	1.83	2.728(2)	168
O3–H3D…O5 ^{vii}	1.84	2.735(2)	168
O4–H4A…O5	1.85	2.739(2)	167

 Table S2. Intermolecular hydrogen bonds for compounds 1–4.

$O4H4BO10^{\text{viii}}$	1.88	2.780(2)	164
O9–H9····N2 ^{viii}	1.88	2.790(2)	171
O9–H9A…O6	1.91	2.775(2)	167
O10-H10…O7	1.86	2.787(2)	171
O10–H10A…O8 ^{vi}	1.78	2.700(2)	167
	Compour	nd 3^a	
01–H1A…O6 ⁱ	1.87	2.758(2)	170
O1–H1B…O7 ⁱⁱ	1.9	2.769(2)	171
O2–H2A···O8 ⁱⁱⁱ	1.84	2.732(2)	169
O2–H2B…O7	1.91	2.810(2)	168
N3–H3A····O6 ^{iv}	2.18	3.031(2)	169
N3–H3B…O3 ^v	2.60	3.342(3)	145
N3–H3B…O4 ⁱⁱ	2.53	3.283(2)	146
O3-H3C…O10 ^{vi}	1.87	2.732(2)	166
O3–H3D…O5 ^{vii}	1.86	2.737(2)	167
O4–H4A…O5	1.83	2.742(2)	170
O4–H4B…O10 ^{viii}	1.89	2.780(2)	164
O9–H9····N2 ^{viii}	1.89	2.794(2)	174
O9–H9A…O6	1.88	2.762(2)	169
O10–H10…O7	1.85	2.781(2)	175
O10–H10A…O8 ^{vi}	1.78	2.708(2)	167
	Compour	nd 4^{b}	
N2-H2B····O1 ⁱ	2.24	3.057(11)	158
N2-H2A…O5	2.70	3.391(10)	138
05…04	-	2.677(11)	-
O3…O5 ⁱⁱ	-	2.888(7)	-

A= acceptor; D= donor.

^{*a*} Symmetry codes for 1–3: (i) *1–x,1–y, 1–z*; (ii) *–x, 1–y,1–z*; (iii) *–1+x, y, z*; (iv) *1–x, –y,1–z*; (v) *x, –1+y, 1+z*; (vi) *1–x,1–y, –z*; (vii) *1–x, 2–y, –z*; (viii) *x,1+y,z*. ^{*b*} For 4: (i) *1/2–x, –1/2+y, 1–z*; (ii) *1/2–x, 1/2+y, 1–z*.

Far-infrared spectra of 1-3

The far-IR spectrum of **3** almost shows close resemblance to the spectrum of **1**, especially in the range of 160–250 cm⁻¹, where the deformations of N–M–N and the asymmetric stretching vibrations of M–N are expected.^{*a*} These low-frequency modes are sensitive to metal-ion mass and provide a clue to metal-site preference. This result strongly suggests that the Co(II) ion in **3** is accommodated in [M $(H_2O)_4(ampyz)_2$]²⁺ unit rather than $[M(H_2O)_6]^{2+}$ unit, and supports the X-ray structure of $[Co(H_2O)_4(ampyz)_2][Fe(H_2O)_6](SO_4)_2(H_2O)_2$ for **3**.

Vibrational mode	Wavenumber (cm ⁻¹)	IR intensity (a.u.)
O-Fe-O def	97	5.44
	112	12.30
N–Fe–N def	166	1.50
	173	8.59
	179	5.69
Fe–N stretch	223	1.35
	227	1.40
Fe–O stretch	316	4.05
H ₂ O twist + ampyz def	390	16.85
H_2O twist + NH_2 rock	400	48.50
H ₂ O wagg + ampyz def	436	50.98
H_2O wagg + NH_2 twist	469	140.96
	483	271.70
H ₂ O rock	538	374.91

^{*a*} **Table.** IR-active vibrational modes of $[Fe(ampyz)_2(H_2O)_4]^{2+}$ complex calculated by Gaussian03.^{*b*}

All assignments are in the usual ranges of vibrational frequencies of aqua and pyridine complexes.[†]

^{*b*}The vibrational assignments were performed on high-spin $[Fe(ampyz)_2(H_2O)_4]^{2+}$ (*S*=2) with the Gaussian 03 program suite [‡] where the effective core potential (ECP) basis set CEP-121G was used with the hybrid density functional B3PW91.

References

[†] (a) K. Nakamoto, *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 5th ed., Wiley, New York, 1997. (b) A. A. Jarz cki, A. D. Anbar and T. G. Spiro. J. Phys. Chem. A., 2004, **108**, 2726.

[‡] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian 03*, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

Fig. S1 UV-vis diffuse reflectance spectra of as-synthesized compounds 1-4.

Fig. S2 Crystal structure and atom labeling scheme of **2**. The ellipsoids are shown at 50% probability level. Atoms labeled with the notation "A" and "B" are symmetry-generated equivalents, (A) -x, 1-y, 1-z; (B) -x, 2-y, -z.

Fig. S3 Crystal structure and atom labeling scheme of **3**. The ellipsoids are shown at 50% probability level. Atoms labeled with the notation "A" and "B" are symmetry-generated equivalents, (A) -x, 1-y, 1-z; (B) -x, 2-y, -z.

Fig. S4 XRPD patterns: (a) simulated from single-crystal X-ray data; (b) as-synthesize 2; (c) the dehydrated form 2A; (d) the rehydrated form 2'.

(The elemental analysis for **2**': Anal. Calcd: C, 13.53; H, 4.38; N, 11.83 %. Found: C,13.72; H, 4.26; N, 12.00%.)

Fig. S5 XRPD patterns: (a) simulated from single-crystal X-ray data; (b) as-synthesize 3; (c) the dehydrated form 3A; (d) the rehydrated form 3'.

(The elemental analysis for **3'**: Anal. Calcd: C, 13.47; H, 4.80; N, 11.78 %. Found: C,13.12; H, 3.87; N, 12.03%.)

Fig. S6 UV-vis diffuse reflectance spectra of the dehydrated compounds 1A–3A, represented together with the colors of their dehydrated samples. The spectrum of 3A shows the overlap bands between 1A and 2A indicating that 3A is also a hetero-metallic compound.

Fig. S7 The UV-vis diffuse reflectance spectra of as-synthesize 2 (red line), the dehydrated form 2A (blue line), and the rehydrated form 2' (black line), represented together with the chromatic changes in bulk samples.

Fig. S8 The UV-vis diffuse reflectance spectra of as-synthesize 3 (red line), the dehydrated form 3A (blue line), and the rehydrated form 3' (black line), represented together with the chromatic changes in bulk samples.