A cw EPR and ENDOR investigation on a series of $\ensuremath{Cr}(I)$ carbonyl

complexes with relevance to alkene oligomerization catalysis:

$[Cr(CO)_4L]^+(L = Ph_2PN(R)PPh_2, Ph_2P(R)PPh_2,).$

Electronic Supplementary Information

CONTENTS

- Figure S1:FSED EPR spectraFigure S2a S2h:Experimental and simulated cw EPR spectra
- Figure S3a S3f: Additional ¹H ENDOR data
- Figure S4 : Additional ¹⁴N ENDOR data
- Figure S5: Additional ³¹P ENDOR data

Figure S1: Experimental (a) and simulated (b) FSED spectra (130K) of $[Cr(CO)_4(dppp)]^+$ (**2b**) recorded in dichloromethane/toluene at a microwave frequency of 9.734 GHz. Spin Hamiltonian parameters: $g_{-} = 2.062$, $g_{i} = 1.987$, ${}^{P}A_{-} = 24.9$ G (72.0 MHz), ${}^{P}A_{i} = 24.5$ G, (68.1 MHz). The FSED spectrum was obtained using a $\pi/2 - \tau - \pi - \tau$ - echo pulse sequence of $\pi/2 = 16$ ns pi = 32 ns, $\tau = 400$ ns, MW attenuation = 7 dB, Video gain = 2 dB, MW freq = 9.73 GHz, Shot repetition time = 2000 us, Shots per point = 50, Temp = 10K.

Figure S2a: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4(dppe)]^+$ (**2a**) recorded in dichloromethane/toluene at a microwave frequency of 9.381 GHz. For simulation parameters refer to Table 1.

Figure S2b: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4(dppp)]^+$ (2b) recorded in dichloromethane/toluene at a microwave frequency of 9.371 GHz. For simulation parameters refer to Table 1.

Figure S2c: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4(Ph_2PBzPPh_2)]^+$ (**2c**) recorded in dichloromethane/toluene at a microwave frequency of 9.375 GHz. For simulation parameters refer to Table 1.

Figure S2d: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4(Ph_2PN(Et)PPh_2)]^+$ (2d) recorded in dichloromethane/toluene at a microwave frequency of 9.363 GHz. For simulation parameters refer to Table 1.

Figure S2e: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4(Ar_2PN(Me)PAr_2)]^+ Ar = 2-C_6H_4(Et)$ (**2e**) recorded in dichloromethane/toluene at a microwave frequency of 9.386 GHz. For simulation parameters refer to Table 1.

Figure S2f: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4((Ph_2PN(iBu)PPh_2)]^+$ (**2f**) recorded in dichloromethane/toluene at a microwave frequency of 9.379 GHz. For simulation parameters refer to Table 1.

Figure S2g: Experimental (a) and simulated (b) cw-EPR spectra (130K) of $[Cr(CO)_4((Ph_2PN(iPr)PPh_2)]^+$ (**2g**) recorded in dichloromethane/toluene at a microwave frequency of 9.376 GHz. For simulation parameters refer to Table 1.

Figure S2h: Experimental (a) and simulated (b) cw-EPR spectra (298K) of $[Cr(CO)_4((Ph_2PN(dppp)PPh_2)]^+$ (**2b**) recorded in dichloromethane/toluene at a microwave frequency of 9.384 GHz. g_{iso} extracted from simulation = 2.04.

Figure S3a: Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4(dppe)]^+$ (**2a**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.493 GHz and a modulation depth of 79 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown the Figure.

Figure S3b(i): Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4(dppp)]^+$ (**2b**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.487 GHz and a modulation depth of 251 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S3b(ii): Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4(dppp)]^+$ (**2b**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.493 GHz and a modulation depth of 79 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S3c: Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4(Ph_2PBzPPh_2)]^+$ (**2c**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.485 GHz and a modulation depth of 79 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S3d: Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4(Ph_2PN(Et)PPh_2)]^+$ (**2d**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.486 GHz and a modulation depth of 79 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S3e: Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4(Ar_2PN(Me)PAr_2)]^+ Ar = 2-C_6H_4(Et)$ (**2e**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.475 GHz and a modulation depth of 79 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S3f: Experimental cw ¹H ENDOR spectra (10K) of $[Cr(CO)_4((Ph_2PN(iBu)PPh_2)]^+$ (**2f**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.476 GHz and a modulation depth of 79 kHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S4: Experimental cw ¹⁴N ENDOR spectra (10K) $[Cr(CO)_4((Ph_2PN(iBu)PPh_2)]^+$ (**2f**) of recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.475 GHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.

Figure S5: Experimental cw ³¹P ENDOR spectra (10K) of $[Cr(CO)_4(Ph_2PBzPPh_2)]^+$ (**2c**) recorded in deuterated dichloromethane/toluene at a microwave frequency of 9.485 GHz. The angular selective spectra were obtained at the magnetic field positions (B in Gauss) shown in the Figure.