Supplementary Information

Elaborate control over the morphology and structure of

mercapto-functionalized mesoporous silicas as multipurpose carriers

Xin Du^{*ab*}, Junhui He^{**a*}

* To whom correspondence should be addressed. Tel.: +86-10-82543535; Fax: +86-10-82543535;

e-mail: jhhe@mail.ipc.ac.cn

^a Functional Nanomaterials Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences (CAS), Zhongguancun Beiyitiao 2, Haidianqu, Beijing 100190, China

^b Graduate University of Chinese Academy of Sciences, CAS, Beijing 100049, China

Fig. S1. Colors of the reaction mixture at different stages. (a) the initial mixture of silica nanorods and aqueous HAuCl₄ presented yellow color; (b) the mixture turned colorless after stirring at room temperature for 3 h (1); (c) the mixture became pale red after addition of a given volume of aqueous NaBH₄ (2); (d) a dark red product was obtained after calcination at 550 $^{\circ}$ C for 3 h (3).

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

Fig. S2. SEM (a) and TEM (b,c) images of extracted S7-0.30.

Fig. S3. EDX spectrum of uncalcined Au@SiO₂ (extracted S4-0.10 as carrier). The presence of S (black arrow) and Au (gray arrows) elements is clearly shown, suggesting successful functionalization by mercapto (HS-) groups and loading of Au nanoparticles in the mesopores of silica nanorods, respectively. The presence of C and Cu elements is attributed to carbon-coated copper grid.

Fig. S4. TEM images of uncalcined Au@SiO₂ nanorods (extracted S3-0.08 as carrier).

Fig. S5. TEM images of uncalcined $Au@SiO_2$ nanospheres (S3-0.10-10 silica nanospheres as carrier). The scale bar in (b) is 5 nm.

Fig. S6. TEM images of uncalcined Au@SiO₂ nanospheres (calcined S1-0.00 silica nanospheres as carrier) and Au@SiO₂ nanorods (calcined S4-0.10 silica nanorods as carrier).