Supporting Information

Heterogenised N-Heterocyclic Carbene Complexes: Synthesis, Characterisation and Application for Hydroformylation and C–C Bond Formation Reactions

Sarim Dastgir, $*^{\ddagger a}$ Karl S. Coleman^b and Malcolm L. H. Green $*^{a}$

*^a Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.;
 Tel: +44 (0) 1865 272600; Fax: +44 (0) 1865 272690;

^b Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.

[‡] Present Address: Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 2Z3, 10 Canada); Tel: +1 416 736 2100 Ext. 77720; Fax:+1 416 736 5936

E-mail: malcolm.green@chem.ox.ac.uk (Professor Malcolm L. H. Green, FRS.) sarim.dastgir@lmh.oxon.org (Dr. Sarim Dastgir)

Figure 1. Powder X-ray diffraction pattern for pure MCM-41

Figure 2. Powder X-ray diffraction pattern for Chemically modified MCM-41

Figure 3.Nitrogen absorption-desorption isotherm of chemically modified MCM-41

Figure 5.²⁹Si CP/MAS NMR of Chemically Modified MCM-41

Figure 6. ¹³C{¹H} CP/MAS NMR of Chemically Modified MCM-41

Inorganic Chemistry Crystallography Service

Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road Oxford, OX1 3TA

H atoms not shown

Crystals of Iridium complex 7b were grown from slow evaporation of concentrated benzene solution under constant flow of nitrogen. A single crystal having dimensions approximately 0.08 x 0.08 x 0.22 mm was mounted on a glass fibre using perfluoropolyether oil and cooled rapidly to 150K in a stream of cold N₂ using an Oxford Cryosystems CRYOSTREAM unit. Diffraction data were measured using an Enraf-Nonius KappaCCD diffractometer (graphite-monochromated MoK_a radiation, $\lambda = 0.71073$ Å). Intensity data were processed using the DENZO-SMN package¹.

The structure was solved in the space group $P \overline{1}$ using the direct-methods program SIR92², which located all non-hydrogen atoms. Subsequent full-matrix least-squares refinement was carried out using the CRYSTALS program suite³. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. The hydrogen atoms of the coordinated alkene groups were located in a difference Fourier map and their coordinates and a common isotropic thermal parameter subsequently refined. Other hydrogen atoms were positioned geometrically after each cycle of refinement. A 3-term Chebychev polynomial weighting scheme was applied. Refinement converged satisfactorily to give R = 0.0311, wR = 0.0341.

Attached is a thermal ellipsoid plot (ORTEP-3⁴) at 40% probability. A summary of crystallographic data is given below, as are full lists of atomic coordinates, anisotropic thermal parameters and those bond lengths and angles not concerning H atoms.

References:

- 1 Z. Otwinowski and W. Minor, *Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol.*, 1997, **276**, Eds C. W. Carter and R. M. Sweet, Academic Press.
- A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi ,M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.* 1994, **27**, 435.
- 3 CRYSTALS Issue 12, P. W. Betteridge, J. R. Cooper, R. I. Cooper, K. Prout and D. J. Watkin, *J. Appl. Cryst.*, 2003, **36**, 1487
- 4 ORTEP-3 v. 1.0.2, C. K. Johnson and M. K. Burnett, 1998.

Table 1: Crystal data and refinement details

Crystal identification	(η⁴-1,5-COD)(tmp ^t Bu)lrCl, 7b
Chemical formula	C _{21H38} CIIrN ₂ O ₃ Si
Formula weight	622.30
Temperature (K)	150
Wavelength (Å)	0.71073
Crystal system	Triclinic
Space group	P 1
a (Å)	7.3574(2)
b (Å)	9.8123(3)
<i>c</i> (Å)	17.6344(5)
α (°)	97.7864(10)
β (°)	99.9008(11)
γ (°)	100.0573(13)
Cell volume (Å ³)	1216.74(6)
Z	2
Calculated density (Mg/m ³)	1.698
Absorption coefficient (mm ⁻¹)	5.669
F ₀₀₀	620
Crystal size (mm)	0.08 x 0.08 x 0.22 mm
Description of crystal	Yellow prism
Absorption correction	Semi-empirical from equivalent reflections
Transmission coefficients (min,max)	0.27, 0.64
θ range for data collection (°)	$5.0 \le \theta \le 27.5$
Index ranges	$-9 \le h \le 9, -12 \le k \le 12, 0 \le l \le 22$
Reflections measured	14106
Unique reflections	5525
R _{int}	0.044
Observed reflections (I > 3σ (I))	4674
Refinement method	Full-matrix least-squares on F
Parameters refined	275
Weighting scheme	Chebychev 3-term polynomial

Goodness of fit	1.0899		
R	0.0311		
wR	0.0341		
Residual electron density (min,max) (eÅ ⁻³)	-1.33, 1.30		

Table 2: Atomic coordinates and equivalent isotropic thermal parameters (Å²) of nonhydrogen atoms

Atom	x	У	Z	U _{equiv}
lr(1)	0.53509(3)	0.296987(18)	0.308514(11)	0.0227
CI(1)	0.6960(2)	0.26680(14)	0.20472(9)	0.0456
C(1)	0.5169(6)	0.4950(5)	0.2869(3)	0.0209
N(1)	0.3701(5)	0.5193(4)	0.2361(2)	0.0235
C(2)	0.3896(7)	0.6598(5)	0.2308(3)	0.0299
C(3)	0.5490(7)	0.7262(5)	0.2787(3)	0.0285
N(2)	0.6300(5)	0.6251(4)	0.3142(2)	0.0231
C(4)	0.2140(7)	0.4102(5)	0.1886(3)	0.0279
C(5)	0.2252(7)	0.3842(5)	0.1030(3)	0.0301
C(6)	0.0463(8)	0.2798(6)	0.0564(3)	0.0349
Si(1)	0.0215(2)	0.23857(15)	-0.05049(8)	0.0307
O(1)	-0.1978(6)	0.1832(5)	-0.0934(2)	0.0461
C(7)	-0.3263(11)	0.0847(9)	-0.0653(5)	0.0694
O(2)	0.1471(6)	0.1217(4)	-0.0677(2)	0.0425
C(8)	0.1466(13)	0.0577(8)	-0.1449(4)	0.0609
O(3)	0.0822(6)	0.3730(4)	-0.0923(2)	0.0408
C(9)	0.2744(9)	0.4370(7)	-0.0899(4)	0.0469
C(10)	0.8278(6)	0.6593(5)	0.3603(3)	0.0256
C(11)	0.8494(8)	0.5758(6)	0.4268(3)	0.0394
C(12)	0.8803(8)	0.8161(6)	0.3959(4)	0.0403
C(13)	0.9572(8)	0.6259(7)	0.3047(4)	0.0439
C(14)	0.4666(8)	0.3327(5)	0.4200(3)	0.0308
C(15)	0.3002(7)	0.2877(5)	0.3622(3)	0.0265
C(16)	0.1771(8)	0.1415(6)	0.3476(3)	0.0373
C(17)	0.2838(8)	0.0257(6)	0.3323(4)	0.0454
C(18)	0.4627(8)	0.0706(5)	0.3028(3)	0.0329
C(19)	0.6338(7)	0.1241(5)	0.3531(4)	0.0362
C(20)	0.6705(10)	0.1493(7)	0.4393(4)	0.0533
C(21)	0.5457(9)	0.2379(7)	0.4746(4)	0.0480

Table 3: Atomic coordinates and isotropic thermal parameters (Å²) of hydrogen atoms

Atom	X	У	Z	U _{iso}
	0.400(0)	0.400(7)	0,400(0)	0.004(7)
H(1)	0.493(8)	0.428(7)	0.438(3)	0.031(7)
H(2)	0.258(8)	0.362(6)	0.351(3)	0.031(7)
H(3)	0.482(8)	0.034(6)	0.249(4)	0.031(7)
H(4)	0.743(9)	0.117(6)	0.335(3)	0.031(7)
H(21)	0.3004	0.7035	0.1971	0.0381
H(31)	0.6021	0.8294	0.2879	0.0354
H(41)	0.0926	0.4402	0.1931	0.0327
H(42)	0.2165	0.3206	0.2094	0.0327
H(51)	0.2348	0.4749	0.0826	0.0364
H(52)	0.3388	0.3439	0.0970	0.0364
H(61)	-0.0648	0.3197	0.0669	0.0407
H(62)	0.0434	0.1895	0.0770	0.0407
H(71)	-0.4531	0.0656	-0.1006	0.0766
H(72)	-0.3364	0.1246	-0.0113	0.0766
H(73)	-0.2793	-0.0048	-0.0644	0.0766
H(81)	0.2324	-0.0109	-0.1431	0.0750
H(82)	0.1912	0.1315	-0.1752	0.0750
H(83)	0.0157	0.0074	-0.1707	0.0750
H(91)	0.2779	0.5174	-0.1194	0.0558
H(92)	0.3403	0.4723	-0.0344	0.0558
H(93)	0.3390	0.3661	-0.1143	0.0558
H(111)	0.9828	0.6010	0.4564	0.0441
H(112)	0.7634	0.5985	0.4627	0.0441
H(113)	0.8165	0.4731	0.4050	0.0441
H(121)	1.0124	0.8390	0.4267	0.0460
H(122)	0.7923	0.8382	0.4311	0.0460
H(123)	0.8703	0.8734	0.3531	0.0460
H(131)	1.0906	0.6479	0.3341	0.0538
H(132)	0.9447	0.6839	0.2624	0.0538
H(133)	0.9213	0.5240	0.2811	0.0538
H(161)	0.1211	0.1289	0.3946	0.0431
H(162)	0.0741	0.1337	0.3012	0.0431
H(171)	0.3179	-0.0102	0.3822	0.0537
H(172)	0 1990	-0.0516	0.2923	0.0537
H(201)	0.8048	0 1985	0.4590	0.0621
H(202)	0.6499	0.0563	0 4571	0.0621
H(211)	0.6216	0.2987	0.5238	0.0572
H(212)	0.4376	0 1735	0.4869	0.0572
· · \ / · / /	0.4010	0.1700	0.4000	0.0012

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010 Table 4: Anisotropic thermal parameters (Å²)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
lr(1)	0.02356(9)	0.01796(9)	0.02918(10)	0.00628(6)	0.00943(6)	0.00497(6)
CI(1)	0.0630(9)	0.0315(6)	0.0585(9)	0.0133(6)	0.0432(8)	0.0181(6)
C(1)	0.022(2)	0.022(2)	0.021(2)	0.0041(16)	0.0094(17)	0.0052(16)
N(1)	0.0229(18)	0.0223(18)	0.0261(19)	0.0065(15)	0.0050(15)	0.0044(14)
C(2)	0.036(3)	0.029(2)	0.031(2)	0.0119(19)	0.006(2)	0.016(2)
C(3)	0.033(2)	0.022(2)	0.033(2)	0.0075(18)	0.010(2)	0.0090(18)
N(2)	0.0237(18)	0.0197(17)	0.0256(19)	0.0041(14)	0.0043(15)	0.0037(14)
C(4)	0.024(2)	0.036(3)	0.022(2)	0.0030(19)	0.0035(18)	0.0036(19)
C(5)	0.029(2)	0.035(3)	0.027(2)	0.0052(19)	0.0062(19)	0.008(2)
C(6)	0.034(3)	0.039(3)	0.029(3)	0.002(2)	0.007(2)	0.001(2)
Si(1)	0.0331(7)	0.0312(7)	0.0274(7)	0.0058(5)	0.0014(5)	0.0094(6)
O(1)	0.038(2)	0.057(3)	0.040(2)	0.0199(19)	-0.0059(17)	0.0041(19)
C(7)	0.051(4)	0.076(5)	0.064(5)	0.025(4)	-0.013(4)	-0.018(4)
O(2)	0.055(2)	0.041(2)	0.036(2)	0.0079(17)	0.0092(18)	0.0228(19)
C(8)	0.093(6)	0.050(4)	0.044(4)	-0.003(3)	0.017(4)	0.033(4)
O(3)	0.045(2)	0.037(2)	0.044(2)	0.0161(17)	0.0093(18)	0.0134(17)
C(9)	0.052(4)	0.045(3)	0.043(3)	0.011(3)	0.011(3)	0.002(3)
C(10)	0.026(2)	0.024(2)	0.023(2)	0.0016(17)	0.0002(18)	-0.0008(17)
C(11)	0.035(3)	0.036(3)	0.039(3)	0.015(2)	-0.008(2)	-0.006(2)
C(12)	0.043(3)	0.028(3)	0.045(3)	0.007(2)	0.003(2)	-0.003(2)
C(13)	0.025(2)	0.051(3)	0.058(4)	0.012(3)	0.015(2)	0.007(2)
C(14)	0.041(3)	0.027(2)	0.022(2)	0.0020(18)	0.010(2)	-0.002(2)
C(15)	0.026(2)	0.026(2)	0.029(2)	0.0055(18)	0.0107(19)	0.0036(18)
C(16)	0.031(3)	0.037(3)	0.040(3)	-0.001(2)	0.013(2)	-0.004(2)
C(17)	0.037(3)	0.027(3)	0.070(4)	0.013(3)	0.012(3)	-0.004(2)
C(18)	0.039(3)	0.018(2)	0.042(3)	0.004(2)	0.011(2)	0.0050(19)
C(19)	0.028(2)	0.022(2)	0.062(4)	0.018(2)	0.007(2)	0.0088(19)
C(20)	0.059(4)	0.042(3)	0.054(4)	0.018(3)	-0.011(3)	0.012(3)
C(21)	0.050(3)	0.059(4)	0.035(3)	0.019(3)	0.002(3)	0.005(3)

Table 5: Bond lengths (Å)

Ir(1) - CI(1)	2.3582(13)	Si(1) - O(2)	1.623(4)
lr(1) - C(1)	2.052(4)	Si(1) - O(3)	1.629(4)
lr(1) - C(14)	2.112(5)	O(1) - C(7)	1.430(8)
lr(1) - C(15)	2.103(5)	O(2) - C(8)	1.419(8)
lr(1) - C(18)	2.176(5)	O(3) - C(9)	1.435(7)
lr(1) - C(19)	2.150(5)	C(10) - C(11)	1.521(7)
C(1) - N(1)	1.357(6)	C(10) - C(12)	1.536(7)
C(1) - N(2)	1.371(6)	C(10) - C(13)	1.523(7)
N(1) - C(2)	1.379(6)	C(14) - C(15)	1.412(7)
N(1) - C(4)	1.471(6)	C(14) - C(21)	1.539(8)
C(2) - C(3)	1.326(7)	C(15) - C(16)	1.519(7)
C(3) - N(2)	1.406(6)	C(16) - C(17)	1.511(8)
N(2) - C(10)	1.497(6)	C(17) - C(18)	1.514(8)
C(4) - C(5)	1.516(7)	C(18) - C(19)	1.380(8)
C(5) - C(6)	1.544(7)	C(19) - C(20)	1.476(9)
C(6) - Si(1)	1.844(5)	C(20) - C(21)	1.521(10)
Si(1) - O(1)	1.623(4)		

Note - H atoms have been excluded

Table 6: Bond angles (°)

Cl(1) - lr(1) - C(1)	89.32(12)	C(6) - Si(1) - O(2)	107.0(2)
CI(1) - Ir(1) - C(14)	164.20(15)	O(1) - Si(1) - O(2)	111.8(2)
C(1) - Ir(1) - C(14)	94.11(18)	C(6) - Si(1) - O(3)	114.9(2)
Cl(1) - lr(1) - C(15)	156.40(14)	O(1) - Si(1) - O(3)	101.6(2)
C(1) - Ir(1) - C(15)	90.91(18)	O(2) - Si(1) - O(3)	110.4(2)
C(14) - Ir(1) - C(15)	39.1(2)	Si(1) - O(1) - C(7)	123.0(4)
Cl(1) - lr(1) - C(18)	90.67(15)	Si(1) - O(2) - C(8)	121.6(4)
C(1) - Ir(1) - C(18)	160.23(19)	Si(1) - O(3) - C(9)	123.4(4)
C(14) - Ir(1) - C(18)	91.3(2)	N(2) - C(10) - C(11)	111.4(4)
C(15) - Ir(1) - C(18)	81.3(2)	N(2) - C(10) - C(12)	109.5(4)
Cl(1) - lr(1) - C(19)	90.10(17)	C(11) - C(10) - C(12)	108.0(4)
C(1) - Ir(1) - C(19)	162.56(19)	N(2) - C(10) - C(13)	107.9(4)
C(14) - Ir(1) - C(19)	82.0(2)	C(11) - C(10) - C(13)	110.4(5)
C(15) - Ir(1) - C(19)	96.5(2)	C(12) - C(10) - C(13)	109.8(4)
C(18) - Ir(1) - C(19)	37.2(2)	lr(1) - C(14) - C(15)	70.1(3)
lr(1) - C(1) - N(1)	122.1(3)	lr(1) - C(14) - C(21)	112.5(4)
Ir(1) - C(1) - N(2)	133.6(3)	C(15) - C(14) - C(21)	123.6(5)
N(1) - C(1) - N(2)	104.4(4)	lr(1) - C(15) - C(14)	70.8(3)
C(1) - N(1) - C(2)	111.6(4)	lr(1) - C(15) - C(16)	113.2(3)
C(1) - N(1) - C(4)	125.0(4)	C(14) - C(15) - C(16)	124.0(5)
C(2) - N(1) - C(4)	123.3(4)	C(15) - C(16) - C(17)	113.3(4)
N(1) - C(2) - C(3)	107.1(4)	C(16) - C(17) - C(18)	114.3(4)
C(2) - C(3) - N(2)	107.6(4)	lr(1) - C(18) - C(17)	112.3(4)
C(1) - N(2) - C(3)	109.4(4)	lr(1) - C(18) - C(19)	70.4(3)
C(1) - N(2) - C(10)	127.8(4)	C(17) - C(18) - C(19)	122.0(5)
C(3) - N(2) - C(10)	121.6(4)	lr(1) - C(19) - C(18)	72.4(3)
N(1) - C(4) - C(5)	113.1(4)	lr(1) - C(19) - C(20)	110.6(4)
C(4) - C(5) - C(6)	109.5(4)	C(18) - C(19) - C(20)	127.1(6)
C(5) - C(6) - Si(1)	117.6(4)	C(19) - C(20) - C(21)	114.3(5)
C(6) - Si(1) - O(1)	111.2(2)	C(14) - C(21) - C(20)	113.4(5)

Note - H atoms have been excluded