Supporting Information for

Electrophilic activation and the formation of an unusual Tl⁺/Cr³⁺ tetranuclear ion-complex adduct

Shaofeng Liu,^{*a,b*} Riccardo Peloso,^{*a,c*} Roberto Pattacini,^{*a*} Pierre Braunstein,^{**a*}

^{*a*} Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France. Fax: (+33) 3-6885-1322. *E-mail: braunstein@unistra.fr*

^b Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^c Current address: Instituto de Investigaciones Químicas - Departamento de Química Inorgánica, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain.

Synthesis

General Considerations

All manipulations were carried out under inert argon atmosphere, using standard Schlenk techniques and dried and freshly distilled solvents. Unless otherwise stated, the ¹H and ³¹P{¹H} NMR spectra were recorded on a Bruker Avance 300 instrument at 300.13 and 121.49 MHz, respectively, using TMS or H₃PO₄ (85% in D₂O) as external standards, with downfield shifts reported as positive. All NMR spectra were measured at 298 K, unless otherwise specified. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer equipped with a Smart Orbit ATR accessory (Ge or diamond crystals). Gas chromatographic analyses were performed on a Thermoquest GC8000 Top Series gas chromatograph using a HP Pona column (50 m, 0.2 mm diameter, 0.5 µm film thickness). Elemental C, H, and N analyses were performed by the Service de microanalyses, Université de Strasbourg (France). The ligand bis(2-picolyl)phenylphosphine (NPN)^{S-1} and the complexes [CrCl₃(THF)₃]^{S-2} and [CrCl₃(NPN)]·MeCN^{S-3} (Anal. Calcd for C₁₈H₁₇Cl₃CrN₂P·CH₃CN: C, 48.85; H, 4.10; N, 8.55. Found: C, 48.69; H, 4.16; N, 8.44) were prepared according to literature procedures. Methylaluminoxane (10 wt % in toluene) was purchased from Sigma-Aldrich.

Crystallographic data

X-ray data collection, structure solution and refinement compounds 1 and 2

For 1, suitable single crystals for X-ray analysis were grown by layering Et_2O on a concentrated dichloromethane solution of the pure compound and single crystals of 2 by layering Et_2O on a concentrated acetone solution of the pure compound.

The intensity data were collected at 173(2) K on a Kappa CCD diffractometer^{S-4} (graphite monochromated MoKa radiation, l = 0.71073 Å). Crystallographic and experimental details for the structures are summarized in Table S1. The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-squares procedures (based on F^2 , SHELXL-97)^{S-5} with anisotropic thermal parameters for all the non-hydrogen atoms. The hydrogen atoms were introduced into the geometrically calculated positions (SHELXS-97 procedures) and refined *riding* on the corresponding parent atoms. CCDC 771851 (1) and 771852 (2) contain the supplementary crystallographic data for this paper that can be obtained free of charge from the Cambridge Crystallographic Data Center via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Compound	1	2	
Chemical formula	$C_{18}H_{17}Cl_3CrN_2P$	$C_{18}H_{17}Cl_3CrN_2P{\cdot}F_6P{\cdot}Tl$	
Formula Mass	450.66	800.00	
Crystal system	Monoclinic	Triclinic	
a/Å	14.2128(5)	8.9323(4)	
<i>b</i> /Å	13.4012(5)	12.0205(5)	
c/Å	21.8650(7)	12.8804(4)	
$\alpha / ^{\circ}$	90.00	72.356(2)	
$eta/^{\circ}$	113.705(2)	71.627(2)	
$\gamma/^{\circ}$	90.00	69.739(2)	
Unit cell volume/Å ³	3813.2(2)	1201.70(8)	
Temperature/K	173(2)	173(2)	
Space group	$P2_{1}/c$	<i>P</i> -1	
No. of formula units per unit cell, Z	8	2	
Absorption coefficient, μ/mm^{-1}	1.108	7.672	
No. of reflections measured	15041	9090	
No. of independent reflections	8300	5504	
R _{int}	0.0608	0.0279	
Final R_I values $(I > 2\sigma(I))$	0.0483	0.0372	
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1057	0.1115	
Final R_I values (all data)	0.1178	0.0469	
Final $wR(F^2)$ values (all data)	0.1233	0.1247	
Goodness of fit on F^2	0.954	1.088	

Table S1. Data collection and refinement parameters for compounds 1 and 2

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Figure S1. ORTEP view of the molecular structure of **1**. Only one of the two independent molecules is depicted. Ellipsoids are depicted at 50% probability level.

Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2010

Table S2. Comparison between selected bond distances (Å) and angles (°) betweenfac-[CrCl₃(NPN)] in 1 and 2. In 1, two crystallographically independent molecules were present.

	1 (molecule A)	1 (molecule B)	2
Cr1-P1	2.351(1)	2.369(1)	2.351(2)
Cr1-N1	2.114(3)	2.137(3)	2.122(5)
Cr1-N2	2.138(3)	2.147(3)	2.124(5)
Cr1-Cl1	2.337(1)	2.320(1)	2.363(2)
Cr1-Cl2	2.315(1)	2.324(1)	2.311(2)
Cr1-Cl3	2.317(1)	2.316(1)	2.328(2)
P1-Cr1-N1	81.89(8)	81.25(9)	80.7(1)
P1-Cr1-N2	78.09(8)	76.41(9)	81.6(1)
N1-Cr1-N2	83.6(1)	88.1(1)	88.7(2)
Cl1-Cr1-Cl2	93.30(4)	94.47(4)	93.04(6)
Cl1-Cr1-Cl3	96.06(4)	93.09(4)	90.86(6)
Cl2-Cr1-Cl3	98.38(4)	95.82(4)	94.03(6)

References

- S-1 A. Kermagoret, F. Tomicki and P. Braunstein, Dalton Trans., 2008, 2945.
- S-2 W. Herwig and H. H. Zeiss, J. Org. Chem., 1958, 23, 1404.
- S-3 K. K. Klausmeyer and F. Hung, *Acta Crystallogr. Sect. E: Struct. Rep. Online*, 2006, E62, M2415.
- S-4 Bruker-Nonius, Kappa CCD Reference Manual, Nonius BV, The Netherlands, 1998.
- S-5 M. Sheldrick, *SHELXL-97*, Program for crystal structure refinement; University of Göttingen: Germany, 1997.