## Supporting Information

# Unique 3-D Self-Penetrating Co<sup>II</sup> and Ni<sup>II</sup> Coordination Frameworks with a New (4<sup>4</sup>.6<sup>10</sup>.8) Network Topology

Dong-Sheng Li,\*<sup>ac</sup> Feng Fu,<sup>a</sup>Jun Zhao,<sup>a</sup> Ya-Pan Wu,<sup>ac</sup> Miao Du,\*<sup>,b</sup> Kun Zou,<sup>a</sup> Wen-Wen Dong <sup>ac</sup> and Yao-Yu Wang<sup>\*,c</sup>

<sup>a</sup>College of Mechanical & Material Engineering, Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China;

<sup>b</sup>College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, China;

<sup>c</sup>Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry, Northwest University, Xi'an 710069, China

### Dalton

\* Corresponding authors

E-mail address: lidongsheng1@126.com (D.-S. Li), Tel./Fax: +86-717-6397516 E-mail address: dumiao@public.tpt.tj.cn (M. Du), Tel./Fax: +86-22-23766556 E-mail address: wyaoyu@nwu.edu.cn (Y.-Y. Wang), Tel./Fax: +86-29-88303798

#### **Materials and General Methods**

All the solvents and reagents for syntheses were commercially available and used as received. The FT-IR spectra were recorded as KBr pellets on a Thermo Nicolet Nexus 670 FTIR spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 Series II analyzer. Powder X-ray diffraction (PXRD) patterns were taken on a Rigaku D/max-2500 diffractometer for Cu K $\alpha$  radiation ( $\lambda = 1.5406$  Å), with a scan speed of 2 °/min and a step size of 0.02° in 2 $\theta$ . The calculated PXRD patterns were obtained from the single-crystal X-ray diffraction data. TG analyses were recorded with a NETZSCH STA 449C microanalyzer under nitrogen at a heating rate of 10 °C·min<sup>-1</sup>. Variable-temperature magnetic susceptibilities were measured using a MPMS-7 SQUID magnetometer. Diamagnetic corrections were made with Pascal's constants for all constituent atoms.

#### **Crystallographic Data Collection and Refinement**

Single-crystal X-ray diffraction data for complexes **1** and **2** were collected on a Bruker APEX II CCD diffractometer with graphite monochromated Mo Ka radiation (0.71073Å) at 293(2) K. Empirical absorption corrections were applied by using the SADABS program.<sup>1</sup> The structures were solved by direct methods and refined based on  $F^2$  by the full matrix least-squares methods using SHELXTL.<sup>2,3</sup> All non-hydrogen atoms were refined anisotropically, and the H atoms were generated geometrically and refined as riding. Selected bond lengths and angles are listed in Table S1.

#### References

- Sheldrick, G M. SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen, Germany, 1997.
- 2 Sheldrick, G. M. SHELXS-97, *Program for the Solution of Crystal Structures*; University of Göttingen, Germany, 1997.
- 3 Sheldrick, G. M. SHELXL, *Program for the Refinement of Crystal Structures*, University of Gottingen, Germany, 1997.

| 1                   |                        | 2                              |                         |
|---------------------|------------------------|--------------------------------|-------------------------|
| Ni(1)–N(2)          | 2.140(8)               | Co(1)-O(5)#1                   | 2.060(2)                |
| Ni(1)–O(5)#3        | 2.051(5)               | Co(1)–O(6)#2                   | 2.073(3)                |
| Ni(1)–O(6)#2        | <mark>2.034(5)</mark>  | Co(1)–O(1)                     | <mark>2.100(2)</mark>   |
| Ni(1)–O(1)          | 2.082(5)               | Co(1)–O(7)                     | <mark>2.1593(16)</mark> |
| Ni(1)–O(7)          | 2.095(4)               | Co(1)–N(1)#3                   | 2.177(3)                |
| Ni(1)–N(1) #1       | 2.221(6)               | Co(1)–N(2)                     | 2.187(3)                |
|                     |                        |                                |                         |
| O(5)#3–Ni(1)–O(6)#2 | <mark>95.68(19)</mark> | O(5)#1-Co(1)-O(6)#2            | 96.67(9)                |
| O(5)#3-Ni(1)-O(1)   | 173.5(2)               | O(5)#1-Co(1)-O(1)              | 172.54(9)               |
| O(6)#2-Ni(1)-O(1)   | 89.40(2)               | O(6)#2–Co(1)–O(1)              | 90.12(9)                |
| O(5)#3–Ni(1)–O(7)   | <mark>95.21(18)</mark> | (5)#1-Co(1)-O(7)               | 95.04(8)                |
| O(6)#2–Ni(1)–O(7)   | <mark>85.66(16)</mark> | O(6)#2–Co(1)–O(7)              | 84.80(7)                |
| O(1)–Ni(1)–O(7)     | <mark>89.16(19)</mark> | O(1)–Co(1)–O(7)                | <mark>88.62(8)</mark>   |
| O(5)#3-Ni(1)-N(2)   | 86.50(3)               | O(5)#1–Co(1)–N(1)#3            | <mark>86.85(10)</mark>  |
| O(6)#2-Ni(1)-N(2)   | 84.10(2)               | O(6)#2-Co(1)-N(1)#3            | 176.26(10)              |
| O(1)-Ni(1)-N(2)     | 90.00(3)               | O(1)-Co(1)-N(1)#3              | <mark>86.29(10)</mark>  |
| O(7)–Ni(1)–N(2)     | 169.70(2)              | O(7)-Co(1)-N(1)#3              | 96.12(8)                |
| O(5)#3-Ni(1)-N(1)#1 | 83.80(3)               | O(5)#1-Co(1)-N(2)              | 87.29(9)                |
| O(6)#2-Ni(1)-N(1)#1 | 177.10(3)              | <mark>O(6)#2–Co(1)–N(2)</mark> | <mark>87.22(10)</mark>  |
| O(1)-Ni(1)-N(1)#1   | 90.90(3)               | O(1)-Co(1)-N(2)                | 89.99(9)                |
| O(7)-Ni(1)-N(1)#1   | 97.20(3)               | O(7)–Co(1)–N(2)                | <mark>171.90(8)</mark>  |
| N(2)–Ni(1)–N(1)#1   | <mark>93.00(3)</mark>  | N(1)#3-Co(1)-N(2)              | 91.76(10)               |

Table S1 Selected Bond Distances (Å) and Angles (deg) for 1 and 2  $\,$ 

Symmetry codes for **1**: #1 -x-1/2,-y+1/2,-z+1 ; #2 x+1/4,-y+1/2,z-1/4 ; #3 -x,y-1/4,z-1/4; for **2**: #1 -x, y-1/4,z-1/4; #2 x+1/4,-y+1/2,z-1/4; #3 -x-1/2,-y+1/2,-z+1



Figure S1a. IR spectra for 1 (red) and 2 (purple).



Figure S1b. Temperature-variable PXRD patterns for 1.



Figure S1c. Simulated and experimental PXRD patterns for 1.



Figure S2. 3-D coordination network with 1-D channel of 1.



Figure S3a. Single diamondoid cages in each net of 1.



**Figure S3b.** Two **dia** networks building from "warp and weft" type 2-D networks in an alternate fashion.



**Figure S3c.** 1-D quadrate loops constructed from the neighboring dimeric Ni<sup>II</sup> SBUs and V-shaped dps ligands.



**Figure S3d.** The final self-penetrating pattern constructed from two **dia** networks and 1-D quadrate loops.



Figure S4. TGA curves of 1 (green) and 2 (blue).