Electronic Supplementary Information

## Hexanuclear $Fe^{III}_{2}Co^{III}_{2}M^{II}_{2}$ (M = Cu, Ni, Mn) Clusters Based on Kläui's Tripodal Ligand and Tricyanometalates: Syntheses, Structures and Magnetic Properties

Ling-Chen Kang, Ming-Xia Yao, Xin Chen, Yi-Zhi Li, You Song, Jing-Lin Zuo<sup>\*</sup> and Xiao-Zeng You

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China.

<sup>\*</sup> To whom correspondence should be addressed. Email: zuojl@nju.edu.cn. Fax: +86-25-83314502. Nanjing University.

|                    | 0 ()       | e (e)       |            | _ |
|--------------------|------------|-------------|------------|---|
| Bond lengths       |            |             |            |   |
| Fe1–C1             | 1.924(4)   | Fe1–C2      | 1.910(4)   |   |
| Fe1–N8             | 1.962(3)   | Fe1–C3      | 1.925(5)   |   |
| Fe1–N6             | 1.987(3)   | Fe1–N4      | 1.966(3)   |   |
| Co1–P3             | 2.1507(14) | Co1-P1      | 2.1641(14) |   |
| Co1–P2             | 2.1684(17) | Cu1–N2      | 1.962(4)   |   |
| Cu1–N1             | 1.972(4)   | Cu1–O1      | 1.950(3)   |   |
| Cu1–O7             | 1.978(3)   | Cu1–O4      | 2.178(3)   |   |
| C1-N1              | 1.132(6)   | C2-N2#1     | 1.145(6)   |   |
| C3-N3              | 1.131(6)   |             |            |   |
|                    |            |             |            |   |
| <b>Bond</b> angles |            |             |            |   |
| P3-Co1-P1          | 88.74(6)   | P3-Co1-P2   | 90.32(6)   |   |
| P1-Co1-P2          | 93.22(6)   | O1–Cu1–N1   | 88.15(13)  |   |
| O1-Cu1-N2          | 165.95(16) | O1–Cu1–O7   | 89.00(13)  |   |
| N2-Cu1-N1          | 92.56(14)  | N1-Cu1-O7   | 170.14(15) |   |
| N2-Cu1-O7          | 87.94(13)  | N2-Cu1-O4   | 99.60(15)  |   |
| O1–Cu1–O4          | 94.25(14)  | O7–Cu1–O4   | 92.86(14)  |   |
| N1-Cu1-O4          | 96.76(15)  | N1-C1-Fe1   | 176.9(4)   |   |
| N2#1-C2-Fe1        | 179.7(4)   | N3-C3-Fe1   | 179.5(5)   |   |
| C1-N1-Cu1          | 173.1(4)   | C2#1-N2-Cu1 | 174.3(4)   |   |

 Table S1. Selected bond lengths (Å) and angles (deg) for 1

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z

Table S2. Selected bond lengths (Å) and angles (deg) for  $\mathbf{2}$ 

| Bond lengths |            |           |            |
|--------------|------------|-----------|------------|
| Fe1–C1       | 1.908(4)   | Fe1-C2#1  | 1.906(4)   |
| Fe1–C3       | 1.942(4)   | Fe1–N4    | 2.008(3)   |
| Fe1–N6       | 1.997(4)   | Fe1–N8    | 1.992(3)   |
| Co1-P3       | 2.1125(12) | Co1–P1    | 2.1572(12) |
| Co1–P2       | 2.1914(12) | Cu1–N1    | 1.983(3)   |
| Cu1–N2       | 1.960(4)   | Cu1–O1    | 2.116(3)   |
| Cu1–O4       | 1.970(3)   | Cu1–O7    | 1.944(3)   |
| C1-N1        | 1.133(5)   | C2-N2     | 1.165(5)   |
| C3–N3        | 1.072(5)   |           |            |
|              |            |           |            |
| Bond angles  |            |           |            |
| P3-Co1-P1    | 94.15(5)   | P3-Co1-P2 | 87.95(5)   |
| P1-Co1-P2    | 87.94(12)  | O1-Cu1-O4 | 95.75(11)  |
| O1–Cu1–O7    | 94.29(11)  | O4–Cu1–O7 | 87.94(12)  |
| N1-Cu1-O1    | 96.12(13)  | N1-Cu1-O4 | 89.71(13)  |
| N1-Cu1-O7    | 169.50(13) | N2-Cu1-O1 | 99.91(12)  |
| N2-Cu1-O4    | 163.93(13) | N2-Cu1-O7 | 87.30(13)  |
| N1-Cu1-N2    | 92.20(14)  | N1-C1-Fe1 | 177.9(4)   |

| N2-C2-Fe1#1 | 178.8(3) | N3-C3-Fe1 | 177.3(4) |
|-------------|----------|-----------|----------|
| C1-N1-Cu1   | 172.3(3) | C2-N2-Cu1 | 172.8(3) |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1/2, -y + 1/2, z

| Bond lengths |           |             |          |
|--------------|-----------|-------------|----------|
| Fe1–C3       | 1.913(9)  | Fe1–C2      | 1.913(7) |
| Fe1–N4       | 1.951(6)  | Fe1–C1      | 1.931(7) |
| Fe1–N6       | 1.966(5)  | Fe1–N8      | 1.958(6) |
| Co1–P3       | 2.155(2)  | Co1-P1      | 2.156(2) |
| Co1–P2       | 2.162(2)  | Cu1–N2      | 1.961(6) |
| Cu1–N1       | 1.969(6)  | Cu1–O7      | 1.947(4) |
| Cu1–O1       | 1.948(5)  | Cu1–O4      | 2.219(5) |
| C1-N1        | 1.131(8)  | C2-N2#1     | 1.168(8) |
| C3–N3        | 1.148(10) |             |          |
|              |           |             |          |
| Bond angles  |           |             |          |
| P3-Co1-P1    | 92.16(9)  | P3-Co1-P2   | 92.18(9) |
| P1-Co1-P2    | 89.53(8)  | O1–Cu1–O4   | 91.6(2)  |
| 01–Cu1–O7    | 90.7(2)   | O4–Cu1–O7   | 92.9(2)  |
| N1-Cu1-O1    | 86.9(2)   | N1–Cu1–O4   | 103.2(2) |
| N1-Cu1-O7    | 163.8(2)  | N2-Cu1-O1   | 169.4(3) |
| N2-Cu1-O4    | 98.9(2)   | N2-Cu1-O7   | 88.1(2)  |
| N1–Cu1–N2    | 91.3(2)   | N1-C1-Fe1   | 179.3(6) |
| N2#1-C2-Fe1  | 178.8(6)  | N3-C3-Fe1   | 177.7(8) |
| C1-N1-Cu1    | 172.2(6)  | C2#1-N2-Cu1 | 174.8(6) |

| Table S3. Selected | bond lengths | (Å) and a | angles ( | (deg) | for 3 |
|--------------------|--------------|-----------|----------|-------|-------|
|                    | oona rengino | (11) und  | ungies ( | 405/  | 101 0 |

Symmetry transformations used to generate equivalent atoms: #1 - x, -y, -z + 1

| Bond lengths |            |            |            |
|--------------|------------|------------|------------|
| Fe1–C1       | 1.916(5)   | Fe1–C2     | 1.917(5)   |
| Fe1–C3       | 1.929(5)   | Fe1–N4     | 1.973(4)   |
| Fe1–N6       | 1.976(4)   | Fe1–N8     | 1.976(4)   |
| Co(1)-P(3)   | 2.1566(17) | Co(1)-P(1) | 2.1573(17) |
| Co(1)-P(2)   | 2.1596(18) | Ni1-N1     | 2.061(4)   |
| Ni1–N2       | 2.046(4)   | Ni1-N10    | 2.138(5)   |
| Ni1–O1       | 2.034(3)   | Ni1-O4     | 2.071(3)   |
| Ni1–O7       | 2.053(3)   | C1-N1      | 1.141(5)   |
| C2-N2#1      | 1.142(6)   | C3-N3      | 1.130(6)   |
| Bond angles  |            |            |            |
| P3-Co1-P1    | 90.25(6)   | P3-Co1-P2  | 89.78(6)   |
| P1-Co1-P2    | 90.91(7)   | 01-Ni1-O4  | 89.94(13)  |

Table S4. Selected bond lengths (Å) and angles (deg) for 4

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2010

| 01-Ni1-07   | 88.90(14)  | O4-Ni1-O7   | 89.89(13)  |
|-------------|------------|-------------|------------|
| N1-Ni1-O1   | 89.52(14)  | N1-Ni1-O4   | 89.55(14)  |
| N1-Ni1-O7   | 178.33(14) | N2-Ni1-O1   | 176.74(15) |
| N2-Ni1-O4   | 92.33(15)  | N2-Ni1-O7   | 88.76(15)  |
| N10-Ni1-O1  | 91.20(16)  | N10-Ni1-O4  | 177.90(15) |
| N10-Ni1-O7  | 91.89(16)  | N1-Ni1-N2   | 92.84(15)  |
| N1-Ni1-N10  | 88.70(17)  | N2-Ni1-N10  | 86.60(17)  |
| N1-C1-Fe1   | 178.6(4)   | N2#1-C2-Fe1 | 177.2(4)   |
| N3-C3-Fe1   | 177.8(5)   | C1-N1-Ni1   | 175.2(4)   |
| C2#1-N2-Ni1 | 171.8(4)   |             |            |

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z

| Bond lengths |           |             |           |
|--------------|-----------|-------------|-----------|
| Fe1–C1       | 1.906(8)  | Fe1–C2      | 1.895(8)  |
| Fe1–C3       | 1.907(8)  | Fe1–N8      | 1.964(5)  |
| Fe1–N6       | 1.964(6)  | Fe1–N4      | 1.972(6)  |
| Co1–P2       | 2.163(3)  | Co1–P3      | 2.164(3)  |
| Co1-P1       | 2.165(2)  | Mn1–O4      | 2.130(5)  |
| Mn1–O7       | 2.146(5)  | Mn1–O1      | 2.160(5)  |
| Mn1-N2       | 2.215(7)  | Mn1-N1      | 2.218(7)  |
| Mn1-N10      | 2.362(7)  | C1-N1       | 1.152(8)  |
| C2-N2#1      | 1.151(8)  | C3–N3       | 1.150(8)  |
|              |           |             |           |
| Bond angles  |           |             |           |
| P2-Co1-P3    | 90.79(10) | P2-Co1-P1   | 92.94(10) |
| P3-Co1-P1    | 89.85(10) | O4-Mn1-O7   | 88.69(19) |
| O4-Mn1-O1    | 85.8(2)   | O7-Mn1-O1   | 88.5(2)   |
| O4-Mn1-N2    | 171.2(2)  | O7-Mn1-N2   | 97.7(2)   |
| O1-Mn1-N2    | 88.3(2)   | O4-Mn1-N1   | 90.9(2)   |
| O7-Mn1-N1    | 95.9(2)   | O1-Mn1-N1   | 174.5(2)  |
| N2-Mn1-N1    | 94.5(2)   | O4-Mn1-N10  | 89.7(2)   |
| O7-Mn1-N10   | 174.5(2)  | O1-Mn1-N10  | 86.2(2)   |
| N2-Mn1-N10   | 83.4(2)   | N1-Mn1-N10  | 89.4(2)   |
| N1-C1-Fe1    | 177.6(7)  | N2#1-C2-Fe1 | 177.0(7)  |
| N3-C3-Fe1    | 175.9(7)  | C1–N1–Mn1   | 172.3(6)  |
| C2#1-N2-Mn1  | 168.9(6)  |             |           |

Table S5. Selected bond lengths  $(\text{\AA})$  and angles (deg) for 5

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 2, -z + 2



**Fig. S1** ORTEP view of the neutral hexanuclear cluster of **3** with an atom-numbering scheme at the 30% probability level. Ethyl groups of the phosphates and H atoms are omitted for clarity.



**Fig. S2** ORTEP view of the neutral hexanuclear clusters of **4** with an atom-numbering scheme at the 30% probability level. Ethyl groups of the phosphates and H atoms are omitted for clarity.



**Fig. S3** ORTEP view of the neutral hexanuclear clusters of **5** with an atom-numbering scheme at the 30% probability level. Ethyl groups of the phosphates and H atoms are omitted for clarity.





Fig. S4 (a) A view to show the *trans* conformation of the  $L_{CoEt}$  units in complex 1. (b) A view to show the *cis* conformation of the  $L_{CoEt}$  units in complex 2.



Fig. S5 A view to show the chains formed by  $\pi - \pi$  interactions (green dash lines) of the nearby pyrazole rings in complexes 1 (a), 3 (b), 4 (c) and 5 (d).

**Table S6.** Centroid distances of  $\pi$ - $\pi$  stacking interactions between the pyrazole rings of complexes 1, 3, 4 and 5.

| Complexes              | 1         | 3         | 4          | 5          |
|------------------------|-----------|-----------|------------|------------|
| Centroid distances (Å) | 3.4604(7) | 3.7772(7) | 3.6229(10) | 3.8232(14) |



Fig. S6 A view to show the hydrogen-bond interactions (pink dash lines) within complexes 1 (a), 3 (b), 4 (c) and 5 (d).