Supplementary

Thiosemicarbazone derivatives of nickel and copper: the unprecedented coordination of furan ring in octahedral nickel(II) and of triphenylphosphine in three-coordinate copper(I) complexes

Tarlok Singh Lobana,^{a*} Poonam Kumari,^a Rekha Sharma,^a Alfonso Castineiras,^b Ray Jay Butcher,^c Takashiro Akitsu,^d Yoshikazu Aritake^d

^a Department of Chemistry, Guru Nanak Dev University, Amritsar –143 005, India

^bDepartamento De Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782-Santiago, Spain

^c Department of Chemistry, Howard University, Washington DC 20059, USA

^d Department of Chemistry, Tokyo University of Science, Tokyo –1628601, Japan

^{*}To whom correspondence should be addressed. E-mail: <u>tarlokslobana@yahoo.co.in</u>. (T. S. L.); Fax +91-183-2-258820

Spectroscopy (IR, NMR, UV-vis)

The ligands show IR bands due to $v(N^1-H)$ and $v(N^2-H)$ moieties in the region, 3459– 3206 cm⁻¹. In their respective complexes **1–8**, bands due to $v(N^1-H)$ appears in the the range, 3408–3357 cm⁻¹. The $v(N^2-H)$ bands appear at 3129 and 3119 cm⁻¹ in complexes **7** and **8** while this band disappear in complexes **1–6**. This reveals that the ligands are coordinated to the metal center in the anionic form in complexes **1–6** and in neutral form in complexes **7** and **8**. The diagnostic v(C-S) bands lie in the range, 713–752 cm⁻¹ in the complexes **1–6** and v(C=S) band at 848 and 795 cm⁻¹ in complexes **7** and **8** respectively (cf. free ligands, 819–739 cm⁻¹). Other characteristic bands are given in the experimental section.

Free ligands (HaftscN-R², HattscN-R²; R²= Me, Et, Ph) show a signal at low field (8.56–9.40 ppm) due to the presence of hydrazinic proton (-N²H-). This signal appears at δ 11.42 and 11.30 ppm in complexes 7 and 8 respectively, which shows a downfield shift vis-à-vis free ligands which confirmed that thio- ligands are coordinating to Cu in neutral form. Further, the ³¹P NMR spectra of complexes 7 and 8 showed one signal at δ 31.2 and 30.8 ppm respectively, with a coordination shift of $\Delta\delta$ 35.8 (7) and 35.4 (8) ppm. However this signal is absent in the spectra of complexes **3–6**, thus confirming

deprotonation of these ligands in their respective complexes. Complexes 1-3 are paramagnetic, so their NMR spectra were recorded by opening the window from +100 to -100 ppm. In these complexes, signals show downfield shift relative to their respective ligands, except N¹H signal (-4.09, 1; -3.01, 2; -1.12 ppm, 3). In complexes 4–8, signals are well resolved and are given in the experimental section.

In the O, N, S- donor ligand, HaftscN-Me, intense absorption bands at 207, 220 and 314 nm are assigned to $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ transitions respectively. These bands in complex **1** appear at 247 and 301 nm. Two bands at 331 and 406 nm are assigned to S \rightarrow Ni charge transfer transitions, while the bands at 671 and 982 nm are assigned to the d-d transitions: ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ and ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ respectively. The various transitions in complexes **2** and **3** are assigned as follows: $\pi \rightarrow \pi^*$ (248, **2**; 247, **3**), $n \rightarrow \pi^*$ (301, **2**; 301, **3**), $S \rightarrow Ni(CT)$ (331, 405, **2**; 330, 408 **3**), ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(P)$ (675, **2**; 681, **3**) and ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$ (983, **2**; 985, **3**) (Table 1). Similarly, in the N, S- donor ligand, HattscN-Me, the $\pi \rightarrow \pi^*$ (213, 257 nm) shift to 229 nm in square planar complex **4**. The $n \rightarrow \pi^*$ transition (320 nm in ligand) merges with LMCT (S \rightarrow Ni) + v₃(d-d) transitions and appears as an intense band at 337 nm. A band at 412 nm, attributed to ${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$ transition, appears as shoulder to main band. Complexes **5** and **6**, have shown similar transitions in the ranges : 212–269 ($\pi \rightarrow \pi^*$), 343 ($n \rightarrow \pi^*$, S \rightarrow Ni + ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$) and 410–415 nm (${}^{1}A_{1g} \rightarrow {}^{1}A_{2g}$) (Table 2).

IR spectra of the ligands

HaftscN-Me: IR (KBr, cm⁻¹, selected absorption bands): 3445br ($v(N^{1}-H)$); 3241s ($v(N^{2}-H)$); 3051w, 2984w (v(C-H)); 1555s, 1496s (v(C=N) + v(C=C)); 1077s, 1047s (v(C-N)); 739s (v(C-S)).

HaftscN-Et: IR (KBr, cm⁻¹, selected absorption bands): 3334br ($v(N^{1}-H)$); 3272br ($v(N^{2}-H)$); 2977w, 2940w, 2866w (v(C-H)); 1539s, 1517s (v(C=N) + v(C=C)); v(C-N)); 744s (v(C-S)).

HaftscN-Ph: IR (KBr, cm⁻¹, selected absorption bands): 3459s (v(N¹-H)); 3341s (v(N²-H)); 3155w, 3103w, 2835w (v(C-H)); 1558s, 1526s (v(C=N) + v(C=C)); 1068s, 1018s, 934s (v(C-N)); 757s (v(C-S)).

HattscN-Me: IR (KBr, cm⁻¹, selected absorption bands): 3446br ($v(N^{1}-H)$); 3385s ($v(N^{2}-H)$); 2989w, 2931w (v(C-H)); 1558s, 1542s (v(C=N) + v(C=C)); 1053s, 1035s, 959s (v(C-N)); 819s (v(C-S)).

HattscN-Et: IR (KBr, cm⁻¹, selected absorption bands): 3358br ($v(N^{1}-H)$); 3206s ($v(N^{2}-H)$); 3128w, 2962w, 2882w (v(C-H)); 1596s, 1517s (v(C=N) + v(C=C)); 1096s, 1053s, 967s (v(C-N)); 811s (v(C-S)).

HattscN-Ph: IR (KBr, cm⁻¹, selected absorption bands): 3390br ($v(N^{1}-H)$); 3248s ($v(N^{2}-H)$); 3052w, 2906w (v(C-H)); 1587s, 1531s (v(C=N) + v(C=C)); 1047s, 1027s (v(C-N)); 817s (v(C-S)).

¹**H** NMR spectra of ligands: HaftscN-Me, ¹H NMR (δ, CDCl₃): δ 8.62 (1H, s, N²H), 7.66 (1H, s, br, N¹H), 7.48 (1H, dd, C⁶H), 6.73 (1H, dd, C⁴H), 6.47 (1H, q, C⁵H), 3.25 (3H, t, CH₃(C²)), 2.21 (3H, d, CH₃(N¹)) ppm. HaftstscN-Et, ¹H NMR (δ, CDCl₃): δ 8.56 (1H, s, N²H), 7.66 (1H, s, br, N¹H), 7.59 (1H, d, C⁶H), 6.72 (1H, s, C⁴H), 6.47 (1H, dd, C⁵H), 3.72 (2H, m, CH₂), 2.20 (3H, d, CH₃(C²)), 1.69 (s, 3H, CH₃(N¹)) ppm. HaftscN-Ph, ¹H NMR (δ, CDCl₃): δ 9.40 (1H, s, N²H), 8.71 (1H, s, N¹H), 7.69 (2H, m, *o*-H(Ph)), 7.52 (1H, dd, *p*-H(Ph)), 7.40 (1H, m, *m*-H(Ph)), 7.24 (2H, dd, C⁶H), 6.79 (1H, dd, C⁴H), 6.54 (1H, dd, C⁵H), 2.35 (3H, s, CH₃(C²)) ppm. HattscN-Me, ¹H NMR (δ, CDCl₃): δ 8.59 (1H, s, N²H), 7.52 (1H, s, br, N¹H), 7.34 (1H, dd, C⁶H), 7.29 (1H, dd, C⁴H), 7.03 (1H, q, C⁵H), 3.27 (3H, t, CH₃(C²)), 2.28 (3H, d, CH₃(N¹)) ppm. HattscN-Et, ¹H NMR (δ, CDCl₃): δ 8.56 (1H, s, N²H), 7.47 (1H, s, br, N¹H), 7.33 (1H, dd, C⁶H), 7.29 (1H, m, C⁴H), 7.03 (1H, m, C⁵H), 3.76 (2H, m, CH₂), 2.25 (3H, d, CH₃(C²)), 1.34 (3H, s, CH₃(N¹)) ppm. HattscN-Ph, ¹H NMR (δ, CDCl₃): δ 9.30 (1H, s, N²H), 8.69 (1H, s, N¹H), 7.71 (1H, d, C⁶H), 7.69 ((1H, d, C⁴H), 7.39 (3H, m, *o*-H+*p*-H(Ph)), 7.23 (1H, t, *m*-H(Ph)), 7.06 (1H, q, C⁵H), 2.31 (3H, d, CH₃(C²)) ppm. **Table 1**. Electronic spectral data: $\lambda_{max/nm}$ (ϵ/L mol⁻¹ cm⁻¹)^a

Compound	$\pi \rightarrow \pi^*$	n→π*	LMCT(S→Ni)	d-d
$[Ni(aftscN-Me)_2]^a$ 1	247(19520)	301(20980)	331(19940)	671 (510)
			406(23680)	982 (540)
$[Ni(aftscN-Et)_2]^a$ 2	248(19430)	301(20950)	331(19930)	675 (380)
			405 (23730)	983 (410)
$[Ni(aftscN-Ph)_2]^a$ 3	247(19410)	301(21000)	330 (19950)	681(360)
			408 (23810)	985(400)

 a 10 $^4 M$ in CH₃OH

HaftscN-Me^a: 207(7080), 220 (4500) $\pi \rightarrow \pi^*$, 314(18540) $n \rightarrow \pi^*$ HaftscN-Et^a: 208(7310), 233 (4340) $\pi \rightarrow \pi^*$, 314(18100) $n \rightarrow \pi^*$ HaftscN-Ph^a: 209(11140), 240 (7500) $\pi \rightarrow \pi^*$, 320(18570) $n \rightarrow \pi^*$

Table 2. Electronic spectral data: $\lambda_{max/nm}$ (ϵ/L mol⁻¹ cm⁻¹)^a

Compound	$\pi {\rightarrow} \pi^*$	$n \rightarrow \pi^{*+} LMCT$	$v_2(d-d)$
		$(S \rightarrow Ni) + v_3(d-d)$	
[Ni(attscN-Me) ₂] ^a 4	229(10970)	337(12750)	412 (4000)
	270 (11000)		
[Ni(attscN-Et) ₂] ^a 5	231(11800)	343(14080)	410 (4000)
	269(12550)		
[Ni(attscN-Ph) ₂] ^a 6	212 (15010)	343(18940)	415 (5200)
	264 (22820)		

^a 10⁻⁴M in CH₃OH,

HattscN-Me^a: 213(12050), 257(10020) sh $\pi \rightarrow \pi^*$, 320(24530) n $\rightarrow \pi^*$

HattscN-Et^a: 212(3990), 260 sh(3590) $\pi \rightarrow \pi^*$, 328(8990) $n \rightarrow \pi^*$

HattscN-Ph^b: 268 sh (8210) $\pi \rightarrow \pi^*$, 336(8210) $n \rightarrow \pi^*$

^b 10⁻⁴ M in DMSO

Melting Points of complexes: m. p. 220-222 °C (1), 228-230 °C (2), 234-236 °C (3), 215-216 °C (4), 210-212 °C (5), 155-160 °C (6)

Crystal structure

Fig. 1 Molecular structure of complex [Ni(attscN-Et)₂] 5

Packing Interactions

Fig. 2 Packing diagram of complex 1, showing interaction, $\{N^2 \cdots H(N^1), 2.33 \text{ Å}\}$ in 1D chain

Fig. 3 Packing diagram of complex 2, showing interaction, $\{C-S\cdots H(N^1), 2.73 \text{ Å}\}$ in 1D chain

Fig. 4 Packing diagram of complex 2, showing 2D network

Fig. 5 Packing interactions in **3**, showing intermolecular interactions of type 1 molecules, $\{C-S\cdots HN^1, 2.734, (furan)C-H\cdots (ph), 2.837, (furan) \cdots (furan) 3.318 Å\}$ in 1D chain

Fig. 6 Packing diagram of complex **4**, showing intramolecular, $\{C_4H_3S\cdots N^2, 2.63 \text{ Å}\}$ and intermolecular interactions, $\{C-S\cdots HN^1, 2.73 \text{ Å}\}$ in 1D chain

Fig. 7 Packing diagram of complex 4 showing 2D network

Fig. 8 Packing diagram of complex **5**, showing intramolecular, $\{C_4H_3S^{...}N^2, 2.65 \text{ Å}\}$ and intermolecular interactions, $\{C-S^{...}HN^1, 2.82 \text{ Å}\}$ in 1D chain

Fig. 9 Packing diagram of complex 5, showing 2D network

Fig. 10 Molecular structure of complex [CuCl(η^1 -S-HattscN-Me)(Ph₃P)] 8

Fig. 11 Packing diagram of complex 8

Scheme 1. Various intra- and inter-molecular interactions of $[CuCl(\eta^1-S-HattscN-Me)(Ph_3P)]$ 8

Table 3. (C^2 methyl)C-H···H-C(furan) interactions in ligand (Haftsc-N-Me) according to our Chem. Draw Schemes are given below according to their X-ray structures of complexes (1–3)

Haftsc-N-Me 1 2.513 Å (C^{28} -H···H- C^{23}), 2.390 Å (C^{18} -H···H- C^{13}) 2 2.538 Å (C^{20} -H···H- C^{14}), 2.457 Å (C^{30} -H···H- C^{24}), 2.559 Å (C^{40} -H···H- C^{34}), 2.391 Å (C^{50} -H···H- C^{44}) 3 2.342 Å (C^{150} -H···H- C^{13}), 2.430 Å (C^{250} -H···H- C^{23}), 2.450 Å (C^{350} -H···H- C^{33})

 Table 4. Hydrogen Bonds (Å)

Complex 1			
$N^2 \cdots H - N^1$	2.33		
(furan)C-H····S-C	2.85	(furan)C-H····N ²	2.58
Complex 2			
$C-S$ ···· $H-N^1$	2.73		
(furan)C-H····S-C	2.81	(furan)C-H…N ¹	2.72
Complex 3			
$C-S$ ···H- N^1	2.73	(furan)C-H··· (ph)	2.84
(furan) (furan)	3.32	(furan)C-H··· (ph)	3.00
$H-N^1-HCH_2(C^2)$	2.62	$C-S$ ···HCH ₂ (C^2)	2.83
(Ph)C-H···· (ph)	2.86	$(ph)C-H\cdots N^2$	2.66
C-S···HN ¹	2.66		
Complex 4			
$S \cdots N^2$	2.63	$C-S\cdots H(N^1)$	2.73
Complex 5			
$S \cdots N^2$	2.65	$C-S\cdots H(N^1)$	2.82
C^2 ···HCH(N ¹)	2.85	C-S···HCH ₂ CH ₂ (N ¹)	2.83

Table 5. Selected bond lengths (Å) and bond angles (°) of complexes 1–5, 7 and 8

Complex 1			
Ni(1)-N(12)	2.016(12)	Ni(1)-S(1)	2.313(4)
Ni(1)-O(11)	2.358(11)	Ni(1)-N(22)	2.018(12)
Ni(1)-S(2)	2.313(4)	Ni(1)-O(21)	2.319(10)
C(16)-S(1)	1.738(15)	C(26)-S(2)	1.748(16)
C(15)-N(12)	1.299(19)	C(25)-N(22)	1.305(19)
O(21)-Ni(1)-N(22)	74.70(4)	N(22)-Ni(1)-S(2)	83.79(4)
S(1)-Ni(1)-N(12)	83.52(4)	N(12)-Ni(1)-O(11)	74.30(4)

O(21)-Ni(1)-O(11)	73.26(4)	S(2)-Ni(1)-S(1)	100.71(15)
N(22)-Ni(1)-N(12)	162.01(5)	O(21)-Ni(1)-S(2)	158.04(3)
O(11)-Ni(1)-S(1)	150.94(3)		
Complex 2			
One independent			
molecule			
Ni(1)-N(12)	2.032(3)	Ni(1)-S(1)	2.3109(10)
Ni(1)-O(11)	2.284(3)	Ni(1)-N(22)	1.990(3)
Ni(1)-S(2)	2.2902(11)	Ni(1)-O(21)	2.341(3)
C(17)-S(1)	1.736(4)	C(27)-S(2)	1.757(4)
C(16)-N(12)	1.245(4)	C(26)-N(22)	1.346(5)
O(21)-Ni(1)-N(22)	91.37(11)	N(22)-Ni(1)-S(2)	84.00(10)
S(1)-Ni(1)-N(12)	84.56(8)	N(12)-Ni(1)-O(11)	74.97(10)
O(21)-Ni(1)-O(11)	79.89(10)	S(2)-Ni(1)-S(1)	102.21(4)
N(22)-Ni(1)-N(12)	161.99(11)	O(21)-Ni(1)-S(2)	157.54(7)
O(11)-Ni(1)-S(1)	157.78(8)		
Second independent			
molecule			
Ni(2)-N(32)	2.052(3)	Ni(2)-S(3)	2.3163(10)
Ni(2)-O(31)	2.339(3)	Ni(2)-N(42)	2.028(4)
Ni(2)-S(4)	2.3348(11)	Ni(2)-O(41)	2.202(3)
C(37)-S(3)	1.753(4)	C(47)-S(4)	1.700(4)
C(36)-N(32)	1.306(5)	C(46)-N(42)	1.276(5)
O(31)-Ni(2)-N(32)	75.50(12)	N(32)-Ni(2)-S(3)	84.04(10)
S(4)-Ni(2)-N(42)	83.42(10)	N(42)-Ni(2)-O(41)	75.03(13)
O(41)-Ni(2)-O(31)	79.89(11)	S(3)-Ni(2)-S(4)	101.41(4)
N(42)-Ni(2)-N(32)	160.84(13)	O(41)-Ni(2)-S(4)	157.69(8)
O(31)-Ni(2)-S(3)	157.36(8)		
Complex 3	, , , , , , , , , , , , , , , , , , ,		
One independent			
molecule			
Ni(1)-N(12)	2.0192(14)	Ni(1)-S(1)	2.3024(5)
Ni(1)-O(11)	2.3525(12)	Ni(1)-N(22)	2.0068(14)
Ni(1)-S(2)	2.3089(5)	Ni(1)-O(21)	2.2588(12)
C(16)-S(1)	1.7346(1)	C(26)-S(2)	1.7497(17)
C(15)-N(12)	1.300(2)	C(25)-N(22)	1.303(2)
O(21)-Ni(1)-N(22)	75.12(5)	N(22)-Ni(1)-S(2)	83.60(4)
S(1)-Ni(1)-N(12)	83.82(4)	N(12)-Ni(1)-O(11)	73.95(5)
O(21)-Ni(1)-O(11)	80.12(4)	S(2)-Ni(1)-S(1)	101.261(18)
N(22)-Ni(1)-N(12)	164.43(6)	O(21)-Ni(1)-S(2)	155.63(4)
S(1)-Ni(1)-O(11)	157.10(3)		
Second independent			
molecule			
Ni(2)-N(32)	2.0194(14)	Ni(2)-S(3)	2.3105(5)
Ni(2)-O(31)	2.2964(13)	C(36)-S(3)	1.7505(17)

C(35)-N(32)	1.301(2)		
O(31)-Ni(2)-N(32)	75.09(5)	N(32)-Ni(2)-S(3)	83.52(4)
N(32)-Ni(2)-S(3)	83.52(4)	O(31)-Ni(2)-N(32)	86.14(5)
O(31)-Ni(2)-O(31)	77.94(7)	S(3)-Ni(2)-S(3)	100.32(3)
N(32)-Ni(1)-N(32)	155.90(9)	O(31)-Ni(2)-S(3)	157.55(3)
Complex 4			
Ni(1)-N(12)	1.912(2)	Ni(1)-S(1)	2.1950(8)
C(16)-S(1)	1.753(3)	C(15)-N(12)	1.312(4)
N(12)-Ni(1)-S(1)	93.88(7)	N(12)-Ni(1)-S(1)	85.32(8)
N(12)-Ni(1)-N(12)	176.3(2)	S(1)-Ni(1)-S(1)	155.40(6)
Complex 5			
Ni(1)-N(12)	1.898(3)	Ni(1)-S(1)	2.204(9)
C(16)-S(2)	1.737(4)	C(15)-N(12)	1.314(5)
N(12)-Ni(1)-S(2)	94.82(9)	N(12)-Ni(1)-S(2)	84.80(9)
N(12)-Ni(1)-N(12)	178.3(2)	S(1)-Ni(1)-S(2)	154.47(6)
Complex 7			
Cu(1) - S(2)	2.218(11)	Cu(1) - P(1)	2.223(10)
Cu(1)– $Br(1)$	2.373(6)	S(2)–C(19)	1.721(4)
C(19)–N(2)	1.334(5)	N(2)–N(3)	1.387(4)
S(2)-Cu(1)-P(1)	125.98(4)	S(2)-Cu(1)-Br(1)	122.37(3)
P(1)-Cu(1)-Br(1)	111.53(3)	C(19)–S(2)–Cu(1)	111.44(13)
Complex 8			
Cu(1)-S(3)	2.2244(9)	Cu(1) - P(1)	2.2161(8)
Cu(1)- $Cl(1)$	2.2373(10)	S(3)–C(1)	1.713(3)
P(1)-Cu(1)-Cl(1)	114.99(4)	S(3)-Cu(1)-Cl(1)	120.27(4)
P(1)-Cu(1)-S(3)	124.61(3)	C(1)–S(3)–Cu(1)	110.69(11)

The single crystal of compound (HaftscN-Me) was mounted on Xcalibur, Ruby, Gemini diffractometer, equipped with a graphite monochromator and Mo-K α radiation ($\lambda = 0.71073$ Å). The unit cell dimensions and intensity data were measured at 123(2) K.

HaftscN-Me
$C_{16}H_{24}N_6O_3S_2$
412.53
123(2)
Orthorhombic
Pbcn
13.1262(4)
7.4010(2)
20.7051(5)
90.00
90.00
90.00
2011.43(9)
4
1.362
0.294
10754
3407 [R(int)= 0.0281]
R1= 0.0392, wR2=
0.1061

Table 6. Crystallographic data of ligand HaftscN-Me